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ABSTRACT

This paper introduces RFVibe, a system that enables contactless ma-
terial and object identification through the fusion of millimeter wave
wireless signals with acoustic signals. In particular, RFVibe plays an
audio sound next to the object that generates micro-vibrations in the
object. These micro-vibrations can be captured by shining a millime-
ter wave radar signal on the object and analyzing the phase of the
reflected wireless signal. RFVibe can then extract several features
including resonance frequencies and vibration modes, damping time
of vibrations, and wireless reflection coefficients. These features are
then used to enable more accurate identification, with a step towards
generalizing towards different setups and locations. We implement
RFVibe using an off-the-shelf millimeter-wave radar and an acoustic
speaker. We evaluate it on 23 objects of 7 material types (Metal,
Wood, Ceramic, Glass, Plastic, Cardboard, and Foam), obtaining
81.3% accuracy for material classification, a 30% improvement over
prior work. RFVibe is able to classify with reasonable accuracy
in scenarios that it has not encountered before, including different
locations, angles, boundary conditions, and objects.

CCS CONCEPTS

• Hardware → Wireless devices; Digital signal processing; • Com-

puting methodologies → Neural networks; • Networks → Sensor

networks.
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1 INTRODUCTION

Sensing the world around us has become increasingly important in
the age of automation and smart devices. Non-invasive contactless
material sensing and identification is a key primitive that can enable
or enhance a plethora of applications like robotic grasping and map-
ping [38], liquid and food quality monitoring [12, 19], soil and plant
sensing in agriculture [13], quality control in warehouses and sort-
ing facilities, simpler security scanning as well as structural health
monitoring of building, bridges, planes, trains, etc. Unfortunately,
today material sensing requires bulky and specialized equipment like
optical spectroscopy, X-Ray, and ultrasonography which typically
cost tens of thousands of dollars and are not practical for everyday
use [12, 22, 24].

Recently, there has been significant interest, in the wireless and
mobile research community, to work towards enabling a scalable and
practical solution [12, 19, 40, 47, 48]. In particular, recent work lever-
ages wireless signals from IoT radios to capture material properties
which can enable a cheap, non-invasive, and ubiquitous alternative
that can be used for everyday applications. Most of the recent tech-
niques either require physically touching the material [16, 51] or
attaching an RFID tag to the object a priori [19, 40, 48] which is
sometimes not feasible if the object being sensed is unreachable or
does not have a rigid surface. Other techniques analyze the wireless
signal properties after it has penetrated through the material to ex-
tract the material’s permittivity [12, 15]. However, such techniques
have only been demonstrated for liquids, require careful placement
of the liquid container between two radios, and depend on the con-
tainer the liquid is in. mSense [47] addresses these limitations by
using millimeter wave (mmWave) radios and measuring the reflec-
tion coefficient of the wireless signal from the object to identify the
material. mSense enables a portable and non-invasive solution but
requires the mmWave radio to have a large phased array with 32 TX
by 32 RX antennas and its performance can degrade with smaller
arrays like 2 TX by 4 RX antennas as we show in Sec. 6. It is also
fairly limited in how many scenarios it can accurately classify mate-
rials, as the reflection coefficient depends not only on the material
of the object but the shape and size, the smoothness of its surface
and the surrounding environment.

In this paper, we ask: How can we push the performance of wire-
less sensing towards a contactless, cheap, and more generalizable
solution? To this end, we introduce RFVibe, a mmWave wireless
system that can accurately identify different objects and their materi-
als. RFVibe does not require careful placement of the object and can
work for various locations and objects. The core idea behind RFVibe
is to combine mmWave radar signals with acoustic waves to analyze
the properties of the material. In particular, RFVibe shines mmWave
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Figure 1: RFVibe’s overall design.

radar signals at an object while playing a sound source near the
object without any contact. The sound creates micro-vibrations in
the object which gets picked up by the mmWave signals that carry
rich information about the object’s material and shape. As compared
to simply using the reflection coefficient, vibration properties of
material add another dimension, enabling us to identify material and
objects more uniquely even for objects with non-uniform surfaces.

Translating the above idea into a practical system requires ad-
dressing several challenges. First, we must design an acoustic sound
that allows us to extract resonance frequencies and vibration modes
spanning various objects and frequencies. In other words, we need
an acoustic sound which excites objects consistently and equally
across a range of frequencies, ensuring that objects are excited in
a reproducible manner, allowing for their unique frequencies to
be distinguishable. Moreover, the excited frequencies must also be
discoverable by the mmWave radar hardware as high vibration fre-
quencies tend to be filtered out as we explain in detail in Sec. 4.
Finally, as each object’s vibration damps at a different speed, the
acoustic sound must also allow us to extract the damping properties
of the object to help with its classification. To address this, we design
a weighted impulse train sound source that effectively stimulates
vibrations, can be detected by the mmWave radar, and allows the
vibrations to damp during the silence intervals between impulses
(see Sec. 4.1 for more detail).

Second, feeding the raw data directly to a learning scheme results
in poor performance as we show in Sec. 6.5. Hence, we need to
extract the maximum amount of information useful for material clas-
sification from the radar data before feeding it to machine learning
approaches. We note that the raw signal contains time-frequency
information relating to the micro-vibrations of the object. In Sec. 4.2,
we show how to extract visible vibration frequencies and how these
frequencies change over time as our acoustic impulse train plays.
We also show how to extract the speed at which the object excitation
dampens by processing the time-domain signal. As these properties
heavily depend on the object’s material type, we introduce two new
features, namely Frequency, and Damping, that play a key role in
RFVibe’s material and object classification. Finally, the raw signal
also contains reflection power information, which depends both on
the material type and traveled distance. Therefore, after compensat-
ing for the traveled distance, it can be used as a third feature, which
we call the Power Feature. RFVibe then combines all three features
to infer the object and its material.

Third, the extracted features need to be combined to perform
classification. RFVibe’s dataset includes different setups, objects,
and environments, and since the time-frequency features (Frequency
and Damp) are large vectors, performing classification using these

features becomes a complex task. As such, using ready-to-use clas-
sification methods such as SVMs and random forest does not fully
exploit the information in these features as we show in Sec. 6.5. In-
stead, RFVibe uses a deep neural network that can achieve accurate
classification based on these features. To do so, RFVibe’s neural
network architecture uses three parallel branches which convert the
vibration frequency, reflection power, and damping time features in
one compressed latent space. To make sure each branch is trained
to saturation, we leverage auxiliary supervision [35, 41] by combin-
ing the intermediate outputs and feeding them to a final combined
classification head.

We implement and extensively evaluate RFVibe using commer-
cial speakers and 77-GHz millimeter-wave radars equipped with
2 Tx and 4 Rx antennas in different environments and conditions.
We tested RFVibe on 23 different objects consisting of 7 different
material types (metal, cardboard, wood, ceramic, glass, plastic, and
foam). Our results show that RFVibe achieves 81.3% overall ma-
terial classification accuracy among all objects as well as 74.1%
accuracy in object identification; a 30.0% improvement over prior
work. In unseen settings and environments, RFVibe can still achieve
73.1% accuracy in material classification over all objects. This per-
formance goes up to above 83% to 95% for materials with stronger
vibrations like metals, cardboard, and foam. In Sec. 6.5 we show how
RFVibe performs with new, unseen objects, different speakers, and
unseen distances between the speaker, the radar, and the object, as
well as different boundary conditions. Moreover, when trained only
on forward-facing objects, RFVibe continues to perform accurately
for unseen, rotated objects (up to 80°). Finally, an added benefit
of RFVibe is its ability to operate in scenarios where vision-based
material identification fails, for example when an object is occluded,
inside a bag, painted over, or covered. We show that RFVibe can
perform reasonably well in these unseen scenarios even if they are
not in the training set. Because of that, we envision practical applica-
tions for material sensing abilities in distribution facilities, to verify
that contents of a package match the label or to detect packages with
broken glass.

It is worth noting, that while RFVibe takes a significant step
towards non-invasive, contact-less material identification, there is
still a long way to go in terms of its robustness, reliability, and
generalizability to enable practical applications. Further discussion
on RFVibe’s limitations can be found in Sec. 7.

Contributions: The paper makes the following contributions:
• We introduce RFVibe, the first system that uses acoustic vibrations
together with RF signals to identify objects and materials.
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• We introduce novel vibration and damping features based on
carefully designed acoustic sources that together characterize objects
and their material types.
• We build a prototype of RFVibe using commercial radars and
speakers and evaluate its performance against state-of-the-art base-
lines that relies on RF signals to identify materials.

2 RELATED WORK

A. Non-RF Vibrometry. Visual Vibrometry [11] captures video
with high speed cameras to estimate material properties of objects
based on the vibrational modes of an object. Other works [5] have
since improved over [8, 11] or introduced new applications such
as estimating tree structure [49]. Other camera based methods for
material identification include [33, 36] that use time-of-flight (ToF)
cameras to identify materials. Vibrosight [54] senses activities across
rooms using long-range laser vibrometry. Laser vibrometers have
been previously used in [4, 6, 7, 9, 10, 14, 20] spanning many appli-
cations such as locating mines, fruit quality testing, material defect
identification, and antique quality assessment. Finally, [16] uses a
contact-based method to detect potentially damaged products along
a supply chain.

B. RF Based Material Sensing. Authors of [37] use Channel State
Information (CSI) of commodity WiFi to identify suspicious objects
inside a baggage. IntuWition [52] uses WiFi signals and methods in
radar polarimetry to identify the location and types of materials. In
another work, [45] uses one-shot learning to classify between objects
based on the reflection properties of mmWave signals. Strobe [13]
senses soil moisture using RF propagation in existing Wi-Fi bands.
RadarCat [51] takes the reflected signal from different points on
and within the target for classification using a random forest classi-
fier. However, for the system to work, the target needs to be placed
on the device, touching the sensor. Most relevant to our work is
mSense [47]. It proposes a reflection-based material sensing method,
using a material’s reflection coefficient to classify materials. How-
ever, mSense needs controlled environments to work well. Another
work [21] also relies on the power of reflected signals and a machine
learning model to identify between five materials. However, their
system is only tested on a small number of flat objects of similar size
and thickness, and is not tested on less physically constrained set-
tings. We implement and test systems from [21, 47] against RFVibe
described in Sec. 6.4.

C. RF Based Liquid Sensing LiquID [12] and WiEps [32] identify
the liquid type within a container using UWB and WiFi signals
respectively, that pass through the container and liquid inside it.
FG-LiquID [26] uses mmWave sensors and improves over [12] by
leveraging neural networks. WiMi [15] classifies liquids that are
placed between a router and a WiFi connected device using CSI.
Authors of [31] further generalize liquid identification by using RF
signals to do fine-grained liquid recognition regardless of container
material, shape, and liquid height. HearLiquid [50] attaches a com-
modity speaker and microphone to a container to detect liquid fraud
based on the acoustic absorption and transmission curve of the liq-
uid. Akte-Liquid [34] uses a smartphone speaker and microphone
to sense different amplitude-frequency features of various liquids.
Vi-Liquid [23] identifies liquids based on their viscosity using phone
vibrations attached to the liquid container.

D. RFID Based Sensing. Several works use RFID tags [1, 3, 17] to
sense the presence of nearby objects, without identifying the type
of object. TwinLeak [18] uses RFID tags to detect liquid leakages
in industrial environments. Authors in [29] design a sensor antenna
transmitter system whose frequency shifts depend on the permittivity
of the material under test. TagScan [40] uses RFIDs and a feature
which uses the phase and attenuation constant of the air to generalize
the phase and attenuation constant of the target. Similarly, Tagtag
[48] attaches overlapping RFID tags to targets and identifies them
by looking at the high-resolution phase change caused by the tag
antenna’s impedance difference. Finally, [39] uses RFID tags to
verify the internal status of packages and detect abnormal changes
of the internal items. RF-EATS [19] senses food and liquids inside
a container using the properties of signals reflected off RFID tags
attached to their containers. While RFID based methods are effective,
they rely on RFID tags being in direct contact with the object.

E. Recovering sound and vibrations using wireless signals.
mmVib [25] measures object vibrations in industrial settings. Work
in [44] and subsequently in [27, 42, 43, 53] demonstrate the possi-
bility of picking up acoustic vibrations using RF signals. However,
they do not use it to identify materials but rather to extract voice and
speech from very thin materials.

3 BACKGROUND

3.1 Millimeter Wave Sensing

RFVibe uses a mmWave device to capture the vibrations of the
objects in the scene. Specifically, it uses FMCW chirps that are
continuously transmitted towards the vibrating object. The reflected
signal is captured by the mmWave receiver. The phase of the received
signal contains high-resolution information of the object vibrations.
Specifically, each FMCW chirp gives a phase value that corresponds
to the object distance:

𝜙 = 2𝜋
𝑑

𝜆
(1)

where 𝑑 is the distance from the object, and 𝜆 is the wavelength
of the mmWave signal. Each FMCW sweep results in one phase
measurement, so the frequency of chirps constrains the maximum
detected vibration frequency without aliasing.

3.2 Object Vibration and Non-Destructive Testing

Based on the material, geometry and boundary conditions, systems
will have different frequency response [30]. When the frequency of
the applied force is close to the natural frequency of a system, the
amplitude of the vibrations will increase and we can denote these
as the resonant frequency of the system. These are frequencies with
which objects will naturally vibrate at, and also vibrates at its peak
amplitude when an external force is applied. Other frequencies can
also incur a response, however at lower amplitudes. The natural
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Figure 2: Potential sound sources.
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Figure 4: Extracting the damp feature.

frequency of an object is a fundamental property of objects based on
the specific material and geometry.

There are multiple ways to perform vibration or stress testing.
One way to monitor stress testing is by using a non-destructive
testing technique called acoustic emission testing. This form on non-
destructive testing measures the ultrasonic waves that are emitted
from structures upon stress testing. However, the three most common
are touch based techniques: sinusoidal, random and shock testing.
1) Sinusoidal vibration testing consists of vibrating objects at single
sinusoidal tones or a frequency sweep. The resonant frequencies can
be determined by the vibration measurements that give the largest
amplitude. 2) Random vibration testing uses random noise within the
frequency range to vibrate the object. 3) Shock testing measures the
reaction of an object to a sudden impulse that excites a broadband
range of frequencies. In vibration testing, all these methods are
produced with contact based devices. We use equivalents of these
methods in Sec. 4.1 to determine the best way to excite the objects.

4 RFVIBE’S DESIGN

RFVibe identifies materials by combining RF, acoustics, and vi-
brometry. It works by transmitting a sound signal generated using a
speaker and measuring the vibrations of the object using a mmWave
device. RFVibe analyzes these vibrations to identify the object. Fig. 1
shows an overview design, which can be divided into three main
steps, each discussed in more detail in the rest of this section:

(1) Capturing the object vibration. First, RFVibe captures the
mmWave reflections off the target object. It estimates the objects
location in 3D space while eliminating the effect of other dynamic
and static reflectors in the environment. The output of this stage
is a time-domain RF signal that contains vibration and reflection
characteristics of the object.
(2) Extracting features. RFVibe then extracts different features
from the received mmWave signal that help identify the object and
its material. Specifically, RFVibe introduces a Frequency, Power,
and Damping feature that carry useful information for object classi-
fication.
(3) Object and material identification. In the final step, RFVibe
feeds the features acquired from the received RF signal into a feed-
forward neural network that classifies the material of the object and
further identifies the object itself.

4.1 Capturing the Object Vibration

To capture the object vibration, RFVibe excites the object using
sounds originating from a speaker. Different objects and materials
exhibit different vibration frequencies, we need an acoustic source
which excites objects consistently and equally across a range of
frequencies, ensuring that the objects are excited in a reproducible
manner that allow for their unique frequencies to be distinguishable.
These excited frequencies must also be discernible by the mmWave

transceiver. The first step is to determine the working frequency
range of RFVibe.

Working frequency range. This choice depends on three factors;
one relating to acoustic signal processing, one from a vibrometry
perspective, and one concerning the RF signals.

(1) First, the speaker must be able to generate the frequencies that
are present in the sound signal. This limits the sound source frequen-
cies to the range of around 20 Hz to 20 KHz, the typical range for
commercial speakers.
(2) Second, the working frequency range must have an adequate
overlap with the objects natural frequency to make them distinguish-
able. Our experiments showed that working with the range above
20 Hz has sufficient overlap with objects’ frequencies. Additionally,
we observed that most objects have natural frequencies that fall in
the range of below 150 Hz.
(3) Finally, the frequency range must be discoverable by the
mmWave device. It is therefore infeasible to measure vibrations
that are in the KHz range, as commercial mmWave devices cannot
transmit chirps at such high frequencies. In RFVibe we transmit
chirps at 250 Hz, which can identify vibration frequencies of up to
125 Hz.

Based on these insights, RFVibe operates in the frequency range
of 20 to 125 Hz. The speaker must generates a sound that contains
frequencies in that range. As a result, RFVibe uses a low-frequency
speaker. Sec. 6.5 reviews the effect of using a smaller speaker with
an non-ideal frequency range.

Sound source signal. The next step is to find a source signal that
contains frequencies in the 20 to 125 Hz range. We considered
several options shown in Fig. 2:
(1) Filtered white noise. One obvious option is to use white noise
filtered to the desired range of 20 to 125 Hz.
(2) Linear chirp. Another option is to sweep frequencies starting
from 20 Hz and move up to maximum of 125 Hz.
(3) Pseudo-impulse train. A third option is to sum phase-aligned
sinusoidal signals ranging from 20 to 125 Hz.

While white noise and chirp sources both contain frequencies
from 20 to 125 Hz, they suffer in two ways. First, they both have
relatively lower peaks compared to the pseudo-impulse train, as their
power is more evenly distributed over time. Second, they both lack
intervals during which the signal amplitude is low, which allows the
objects’ vibrations to damp. We therefore use the pseudo-impulse
train as the source that the speaker uses to generate the sound.

Audio Output. The corresponding power for every frequency a
speaker emits is tied to the frequency response of that speaker, which
is generally tuned to emphasize certain frequencies for humans. Thus,
when using a commercial speaker, some frequencies will produce
more pronounced movement. This may result in the speaker’s most
powerful frequencies overpowering the natural frequencies of the
object. To correct this issue, we measure single sinusoidal tones
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Figure 5: Examples of Frequency, Power and Damping Feature.

ranging from 20 to 125 Hz using a measurement microphone. The
measured amplitude per frequency is used for a one time calibration
of the speaker. We created an audio source by summing sine tones
from 20 to 125 Hz and dividing each sine tone by the speakers
measured amplitude for each frequency.

Experiment Setup. Described in more detail in Sec. 5, the speaker
and radar are placed opposite each other with the object in the middle.
This is to mitigate any vibrations seen at the radar and amplify the
acoustic signals hitting the object. Since acoustic signals attenuate
extremely quickly, placing the object within 0.15m ensured that the
vibrations hit the objects. In addition, keeping the speaker more than
0.25m away from the mmWave device ensured that the radar picked
up minimal vibrations from the speaker itself. This was validated
by looking at range bins close to the radar and checking for any
vibrations that were correlated to the speakers vibrations.

Object localization. As the sound wave hits the object and stimu-
lates vibrations, the mmWave device transmits FMCW chirps that
reflect back. However, the target is not the only object that reflects
the mmWave signal. Therefore, we need to isolate the object in
3D to capture its vibrations. To achieve that, we first build on past
work that takes the FFT of the received FMCW signal (range FFT)
and uses range bins to isolate objects in terms of distance from the
radar [2]. As mentioned in Sec. 5, each range bin is an interval of
around 5cm. Within the range bin where the object is, we leverage
the 2D antenna array of our mmWave device to beamform and zoom
into the angles with the strongest reflection. Now, we can isolate the
object of interest and analyze its vibrations.

4.2 Extracting Features

Do we need features? RFVibe extracts features from the reflected
signal that help classify objects. A natural question is whether we
need to extract features from the raw vibration signal, as using the
raw signal and feeding it to a neural network might suffice. However,
the useful information of this raw signal is hidden in several aspects
of the signal, mixed with irrelevant information which might be
difficult for a neural network to learn. As shown in Sec. 6.5, using
the raw phase signal will perform worse than any of the individual
features extracted in this section, and much worse than the combined
system that RFVibe uses for object classification.

RFVibe uses three such features: Frequency Feature, Power Fea-
ture, and a Damping Feature, examples of which are shown in Fig. 5.
The Frequency and Damping features are both extracted from the un-
wrapped phase of the mmWave signal (Sec. 3.1). The Power Feature

is computed using the amplitude of the received mmWave signal.
Below we explain each feature in detail.

1) Frequency Feature. We take the Short Time Fourier Transform
(STFT) over the received phase samples. The STFT is more ex-
pressive over simply the FFT since the vibrations of the object are
transient, as the impulse train momentarily excites the object to vi-
brate, and then waits for it to damp. Hence using the STFT better
captures object vibrations as it is a sliding windowed FFT which
gives both time domain and frequency domain information.

a) Removing ineffective frequencies. Frequencies of 0-20 Hz contain
more noise and represent large movements rather than micrometer-
level vibrations. They do not correspond to the range of frequencies
generated by the sound source (Sec. 4.1). Therefore, they are re-
moved from the STFT as they do not contain any information about
the material itself. The resulting STFT heatmap is shown in Fig. 3,
where we can see the natural frequency of around 80 Hz of an alu-
minum sheet that occurs with each impulse of sound source.

b) Removing time and keeping important frequencies. While the
STFT performs well in capturing the resonance frequencies, we are
not interested in the time when these occur. For example, if the STFT
in Fig. 3 is shifted by a few windows, it does not affect the 80 Hz
resonance frequency, while the STFT heatmap changes. We therefore
need to remove the time dimension from the STFT and only keep
the frequency information. To do so, we begin by normalizing each
window of the resulting STFT to a standard normal distribution by
subtracting the mean and dividing by the standard deviation:

Frequency Feature( 𝑗) =
# windows∑

𝑖=1

normalize
𝑗

(STFT𝑖 𝑗 ). (2)

The signal is summed along the time window axis, giving a
frequency signature invariant to shifts in time. As seen in Fig. 3,
the 80 Hz frequency of the aluminum sheet is more clear in the
object frequency signature compared to the STFT heatmap. We also
compare RFVibe’s Frequency Feature to using the STFT in Sec. 6
and show that RFVibe outperforms using the STFT in material
classification.

2) Power Feature. This feature is generated by taking the Range FFT
of the raw data and multiplying the amplitude by the square distance
each range bin corresponds to. To see why, note that the free space
loss equation for RF signals is as follows 𝐴 = 𝐴0𝐺𝑇𝐺𝑅/(𝜆4𝜋𝑑)
where 𝐴0 is the transmitters signal amplitude, 𝐺𝑇 and 𝐺𝑅 are the
transmitter and receiver’s gains, 𝜆 is the wavelength of the carrier
frequency, and 𝑑 is the distance from the transmitter to the receiver.
Since RFVibe uses the reflected signal, and the transmitter and
receiver are co-located, we account for the loss in amplitude by a
factor of 𝑑−1 once on the outgoing and once again on the incoming
path resulting in an amplitude loss proportional to 𝑑−2. Once we
compensate for the loss, we select the amplitude of a few bins
surrounding the object location and use them as the Power Feature.

3) Damping Feature. This feature shows the damping of an ob-
ject’s resonance frequencies. The process of obtaining this feature is
depicted in Fig. 4.
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a) Extracting the unwrapped phase. The first step is to compute the
unwrapped phase of the received mmWave phase signal. This step
was explained in detail in Sec. 4.1.

b) Applying bandpass filter. To better capture the damping of the ob-
ject and throw out irrelevant information, a bandpass filter is applied
to the signal in the previous step. The passband cutoffs are deter-
mined by selecting the maximum frequency after applying Welch’s
method [46] to the vibration signal. Once the peak is selected, the
vibration data is filtered with a butter bandpass filter around that
peak frequency ± 10 Hz.

c) Computing the envelope of the signal. We next compute the enve-
lope of the filtered phase by taking the absolute value of the Hilbert
Transform.

d) Aligning the peaks. Finally, we need to make sure our feature is
consistent and resistant to time shifts. Note that for each impulse
that the speaker emits, there is a corresponding rise and fall for the
object vibration as shown in Fig. 4(c). To create a consistent feature,
we search for the peaks corresponding to each rise and fall in the
object’s enveloped, filtered phase. As we have approximately 250
samples between consecutive impulses, we search for the maximum
within each 250 points of the enveloped phase. For each maximum,
we take the next 125 samples which approximately includes the
entire time the object loses energy before the next impulse starts.
RFVibe uses these curves as its final Damping Feature.

4.3 Object and Material Identification

The final component of RFVibe uses a neural network that takes in
the extracted features from the previous section and outputs one of
the 𝑁 possible classes. In general, the network can classify between
any set of categories; for instance:
• 𝑁 = 2, can classify between two classes of metal and non-metal
objects as we see in Sec. 6.
• 𝑁 = 7, can classify between seven classes of different materials
(metal, wood, plastic, etc.) as depicted in Fig. 9(a,c).
• 𝑁 = 23, classifies between objects, depicted in Fig. 9(b,d).

At a high level, all of RFVibe’s neural network architectures are
composed of three stages as shown in Fig. 6. First, a set of feature
heads that convert an input feature to an intermediate feature map.
Second, the feature maps are separately used to classify between
𝑁 classes. Finally, an aggregation head combines all intermediate
feature maps to perform classification. The loss of RFVibe’s network
is computed based on both separate and aggregate classifications.
We now explain RFVibe’s architecture in more detail.

1) Feature heads. RFVibe uses feature heads to bring the input
features from different sources into a common latent space. Each
feature head comprises a feed forwards neural network that stacks
convolutional or fully connected layers. The goal of having feature
heads is to bring features from different sources into a common
space where intermediate features can be summed or concatenated.
For example, in RFVibe, the output of all feature heads are of size
𝑛 × 128 for some 𝑛 depending on the input size. Fig. 6 shows the
three features heads for the features described in Sec. 4.2:
(1) The Frequency Feature head takes a 1 × 286 input feature as

described in Sec. 4.2 and outputs a 8 × 128 intermediate feature
map through 8 convolutional layers.

Concatenate 
channels

Loss  

Loss  s

Loss  s

Feature Head

Feature Head

Feature Head

Classifier

Classifier

Classifier

Classifier
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Figure 6: RFVibe’s Neural Network.

(2) The Power Feature head takes in a vector of length 25 and outputs
a 1 × 128 feature map. It consists of two stacked fully connected
layers with maxpool and dropout.

(3) The Damping Feature follows the Frequency Feature head archi-
tecture but takes inputs of size 8× 125 and outputs 8× 128-sized
intermediate feature maps.

2) Classification heads. The second component of RFVibe’s net-
work are the classification heads, that take in intermediate feature
maps and output one of the 𝑁 possible classes. Shown in Fig. 6, all
final classification heads follow the same stack of fully connected,
dropout and maxpooling architecture.

3) Aggregation head. The final component combines the intermedi-
ate feature maps from all sources by summing each set of intermedi-
ate features across its channels, and then concatenating the resulting
feature maps. The result is passed through a classification head to
give the aggregate classification results.

RFVibe uses the prediction from the aggregate classification head
as its final output. In particular, we do not use the results of individual
classification heads as final predictions since they would not express
the intersection of all the features. Instead they are used to modify
the loss function in order to improve the classification accuracy of
the final model, as shown in Sec. 6. The final loss function is a
weighted linear combination of the losses of different classification
heads (𝑊1, · · ·𝑊4 in Fig. 6). This enforces the network to incorporate
each of the feature heads and ensure that the final performance
of the network is trained for. As shown in Sec. 6.5, the weighted
combination outperforms a single aggregate classification head.

5 IMPLEMENTATION

Hardware Setup. RFVibe uses TI’s IWR1843BOOST evaluation
module with the DCA1000EVM. Two transmitters and four receivers
with a two-dimensional virtual array were used to capture data at
77 GHz. The FMCW chirp was designed to have a frame rate of
250Hz. The chirp parameters created a range resolution of 5.63
centimeters, a maximum range of 3.24 meters, and had a sweep
bandwidth of 2.6 GHz. Received data was sent to a host PC using
mmWave Studio. A Klipsch SUB100NA subwoofer was used to pro-
duce acoustic signals in the lower frequency range with a frequency
response of 32 Hz to 120 Hz ± 3dB.

Software Setup. We modified the OpenRadar GitHub [28] to con-
nect the mmWave Studio and scripting for our experiment setup. We
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Figure 7: Experiment setups.

calibrated the raw data in MATLAB, and used Python to extract the
features used.

Speaker and Sound Specifications. The sound used for experiments
was a summation of sinusoidal tones from 20 Hz to 125 Hz, with a
step size of 1 Hz. The amplitude of each sinusoid was compensated
by the amplitude of the speakers output measured with a microphone
for a one time calibration process. The sound had an average power
of 58 dB, an intensity similar to normal conversation. The speaker
was selected based on its ability to clearly produce low frequency
tones within the 20-125 Hz frequency range, which is set by the
mmWave radar’s sampling frequency. These low frequency speakers,
or subwoofers, tend to be larger in size because the more surface
area allows for a less distorted output sound. Within the selection
of commercial speakers, it is rare to find speakers with a frequency
range below 30dB. However, when measuring the power of 20-
125 Hz single tones produced by the Klipsch speaker, the power for
lower frequencies was adequate for our evaluation.

Neural Network Parameters. RFVibe is designed with PyTorch. It
uses a Adam optimizer with learning rate 0.001. The loss is calcu-
lated using cross-entropy loss. The batch size is 32, and the dropout
probability is 0.25. After being fed to RFVibe all three features are
resized to size 128 for each of the intermediate layers. The final loss
weights are set to (𝑊1,𝑊2,𝑊3,𝑊 4) = (0.9, 0.3, 0.3, 1).

Experiment Environment. The data collection setup consisted of
three rooms (various parts of each room were used), shown in Fig. 7.
This way, the dataset was diversified with different multipath profiles
for the acoustic and the RF signals. Objects were placed on different
surfaces: cardboard box, and tables made of plastic, metal, and wood.
Each experiment ran for 13 seconds, during 10 seconds of which the
speaker was playing the sound source. The object was positioned
0.5-2m from the radar, and placed between the radar and speaker,
close to the line connecting the speaker with the radar.

Experiments were performed in an imprecise manner to mimic
everyday use. This meant objects were not placed in an exact location
or orientation to the audio source or the radar. The surroundings
of the experiments had various amounts of background noise and
movement. In addition, the volume of the sound source varied greatly,
which affects the visibility of certain frequencies, which made sure
that the network did not overfit to a specific volume.

Dataset. The dataset includes 23 different objects of various shapes
and sizes consisting of the 7 materials, shown in Fig. 8. The dataset
was split into training, validation and test sets. The validation set

a) aluminum b) USRP cover c) brass d) copper e) steel f) metal box

g) metal pot h) febreze i) candle jar j) wine glass k) glass container l) plastic container

m) clorox container n) plastic o) plastic box p) trash can q) ceramic r) ceramic
bowl

s) foam t) foam head u) hardwood v) wood w) cardboard

Figure 8: Experiment Objects.

was approximately 12% of the training set size, and the test set was
approximately 15% of the training set size. Experiments were split
into three datasets such that they had no overlap in experiment runs.
Between train, validation and test sets, there are no experiments
done in the exact same environment. In other words, for any two
experiments were run in the same batch, they were used both for
training, or both for testing. An experiment run includes a set of 10-
20 experiments per object where, the physical setup did not change.
While the power feature for these experiments remains relatively
similar between the 10-20 experiments, the objects vibration features
still fluctuates. After each run, the radar was turned off and the
physical set up was adjusted. For the results in Sec. 6.2, 6.3 and 6.4
the dataset we used has 12154, 1437, and 1795 experiments for the
training, validation, and test split respectively. In addition, we limit
the samples of each material in all three datasets so that all materials
have equal representation in the datasets.

6 RESULTS

6.1 Evaluation Metrics

We evaluate our system based on accuracy which signifies the over-
all percentage of how often RFVibe correctly classifies between
candidate classes.
Train and test repetitions. For more confidence in our metrics, we
train and test the network 10 times with different random seeds to
get an average accuracy over different initializations and subsets of
the train, validation and test dataset.

In the rest of this section, we will first present the main classi-
fication results and compare our results to the current baseline for
material classification [21, 47]. Then, to better understand the role
of each component of RFVibe, we perform microbenchmarks on
different aspects of our system.

6.2 Material Classification

Experiment. We first present the overall performance of RFVibe
in classifying between different materials. We evaluated RFVibe’s
performance among 7 classes of materials: Cardboard, Metal, Glass,
Ceramic, Plastic, Foam and Wood. A total of 23 objects are tested
that belong to one of the 7 classes such that each class includes
multiple objects. We use the network described in Sec. 4.3 with
𝑁 = 7. As outlined in Sec. 5, no setup was used both in train and
test datasets throughout the experiments. We further report results
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Figure 9: Confusion matrices. (a) material, similar setups. (b) object, similar setups. (c) material, different setups. (d) object, different setups.

for another train and test split, where the setups in the train and test
datasets were drastically different.

Results. The overall accuracy of RFVibe in classifying between
the seven classes was 81.3%, with the detailed accuracy breakdown
shown in Fig. 9(a). As seen from the matrix, RFVibe has a high
accuracy in classifying metal, cardboard, ceramic, glass, plastic and
foam (> 80%). In addition, when generalizing to new, unseen setups,
RFVibe achieves 73.2% accuracy (see Fig. 9(c)) showing its ability
to generalize to new environments. It shows high accuracy for metal,
cardboard, and foam, while maintaining a moderate accuracy for
ceramic, glass, and plastic.

Analysis. Overall, RFVibe accurately classifies all materials. By
relying on features that depend heavily on the material type as
described in Sec. 4.2, RFVibe can generalize to new environments
and unseen setups.

We attribute the higher performance of RFVibe in classifying
metals to them having distinct resonance frequencies. Objects made
of cardboard and foam also demonstrate clear vibrational signals as
they are usually lightweight, resulting in high classification accuracy.
The drop in accuracy around wood is primarily due to the fact that
strong vibrations were not visible with the acoustic source. Even
with contact-based methods such as stimulation by means of tapping,
wooden objects did not demonstrate strong vibrations, resulting in
poor frequency-based and temporal features as discussed in Sec. 4.2.
As a result, the classification network has to rely mostly on the
power-based feature, bringing the classification accuracy of wood
down to 45%. Finally, RFVibe tends to confuse glass and ceramic.
This could be because ceramic and glass have similar properties,
being rigid structures.

6.3 Object Classification

Experiment. We evaluated RFVibe’s classification performance
among 23 classes of different objects, where we ran our network
in Sec. 4.3 with 𝑁 = 23. Other conditions of the experiment were
similar to those described in Sec. 6.2.

Results and Analysis. RFVibe demonstrates an overall accuracy
of 74.4% for object classification. The confusion matrix among all
23 objects is shown in Fig. 9(b). In our results, 10 of the objects
have more than 90% average accuracy and 6 objects have over 70%
average accuracy. Shown in Fig. 9(d), RFVibe generalizes to new,
unseen setups and achieves 63.4% accuracy where 11 of the objects
have more than 80% average accuracy and 16 objects have over
50% average accuracy While we do lose accuracy when specify-
ing objects compared to materials, it gives a good stepping stone
towards more specific objects recognition and potentially geometry
classification. Similarly to material classification, higher accuracy
is seen within metals, which not only have distinctive frequencies
when compared to other materials, but also exhibit unique frequen-
cies within themselves. In fact, when RFVibe is trained to classify
between four metals, RFVibe attains 83% accuracy. Another visible
trend is that objects with larger surface areas produce vibrations that
are much easier for the radar to detect. While RFVibe accounts for
this in the design of features, there are some limitations in the radar’s
angular resolution which makes this task much harder.

6.4 Comparison to Baselines

Baseline Implementation. We compare our results to mSense [47]
and He et al [21] that introduce systems for material classification
based on power of reflected signals. We implemented both systems
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Figure 10: RFVibe vs Baselines mSense [47] and He et al [21].

using the TI IWR1843BOOST evaluation module connected to a
DCA1000EVM. For the mSense implementation, while we replicate
their method and algorithms, our hardware implementation differs
in the following two ways:
1) Antenna diversity: While mSense uses a virtual antenna array
of 32 × 32, giving a total number of 1024 antenna combinations,
our implementation only uses 2 Tx and 4 Rx, resulting in only
8 combinations. This means our implementation has much lower
antenna diversity yielding poorer performance.
2) Object sizes used in the experiments: In mSense, the experiment
objects have surfaces facing the mmWave device that are larger
than those used in our implementation. This means that our imple-
mentation has a lower reflection power due to smaller reflection
surface which results in features being less distinguishable in our
implementation.

Experiment. To better compare with the baselines, we test all three
methods on three separate classification tasks: 1) Classifying be-
tween only two classes: metal vs non-metal. The purpose of this is to
show how well each method works when there are only two classes,
and when there is no need for generalizability. This scenario is ideal
for the power-based methods, as metals generally demonstrate much
stronger reflections than non-metals. 2) Two baselines are designed
for objects which have a flat surface, thus we evaluate all three sys-
tems on 7 materials consisting of flat objects only. This task was
designed to show how the methods perform when the number of
classes increases, making it more difficult to classify solely based
on signal power. 3) Finally, we compare the main results for RFVibe
with the two baselines. This includes all objects for material classifi-
cation, including curved objects. For all three classification tasks, we
provide results for train and test datasets that contain experiments
from similar setups, such as those in manufacturing settings where
the environment and conditions remain relatively constant.

Results and Analysis. As seen in Fig. 10, RFVibe performs at 100%
accuracy for binary classification between metal vs non-metal and
99.2% for objects which have a flat surface area for material classi-
fication. In comparison, while mSense performs relatively well for
binary classification at 90.8%, its performance drops to 66.0% when
classifying between flat materials. This is expected since mSense
relies on a scalar feature (namely normalized power) to classify ma-
terials. Finally, the network of [21] achieves an average accuracy of
82.9% for metal vs non-metal classification and drops significantly
to 55.3% for the material-wise classification.

In the last classification task, RFVibe achieves 81.3% average
accuracy. mSense’s accuracy drastically drops to 5.1% with the in-
troduction of curved objects, since their feature does not take into

(c) Results of various classifiers.

(a) Using different features

(b) Using different loss weights.
Table 1: Feature and network microbenchmark results.

account the size and curvature of an object, all of which affect the re-
flected signal power. The system from [21] achieves 50.5% accuracy
for material classification with similar train and test environments
and 45% accuracy for different train and test environments. The
system from [21] does better due to use of all the channels from the
transmitter-receiver pairs and using a range of 7 bins surrounding
the object’s range bin location for the features.

6.5 Microbenchmarks

1) Impact of Individual Features on the Final Performance. It
is important to see how useful each of the three features are to the
performance of RFVibe. We train and test each of the features sepa-
rately to perform classification the 23 objects. In each experiment,
to remove the other features, we trained the single branch for that
feature and removed the rest of the network as well as the aggregate
head. The results are shown in Tab. 1(a). RFVibe outperforms each
individual feature by a significant margin, by around 26-40%. The
frequency feature performs the best among the features at 47.3%
accuracy, showing the effectiveness of this feature. The power fea-
ture achieves 34.5% accuracy, primarily due to object’s size and its
orientation with respect to radar making a significant difference in
the reflected power. In addition, when the network was trained with
all three features, but sound absent from the experiments, we achieve
35.9% accuracy, showings it’s similarity to training the network with
only the power feature. The temporal feature also provides relevant
information achieving 32.0% accuracy. This experiment shows that
while all three features contribute to the accuracy of RFVibe, the
frequency feature plays a bigger role in material classification, as
reflected by the fine-tuned weights of the network branches reported
in Sec. 5.

We also compare these experiments with an experiment where
we use the raw phase signal (Sec. 4.1) as the only feature in training.
The intuition is, since the frequency and temporal features are based
on the raw phase signal, it might suffice to use the raw phase alone
to classify materials. However, as the results in the table show, this
leads to the worst overall performance of only 25%. This implies
that the raw phase signal on its own is not a very useful feature.

2) Frequency Feature vs STFT. One question raised in Sec. 4.2 was
whether the frequency feature more clearly represents a material, or
whether and STFT would adequately characterize the vibration fre-
quencies. We compare by substituting the STFT rather than using the
frequency feature and adjusted the network architecture accordingly,
displayed in Tab. 1(a). This change resulted in a drop of close to 8%
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Figure 11: Microbenchmarks for generalizing to boundary condition, rotation and affect of using different amount of time domain samples.

in overall accuracy, which demonstrates that while the STFT shows
both temporal and time domain information, the frequency feature
better emphasizes the important frequencies, leaving the temporal
information for the damping feature to capture.

3) Length of Vibration Time Used. RFVibe uses 8 seconds of
data to classify the materials, however, here we show that using
just 3 seconds of data is enough. We train and test the the network
using 650, 1150, 1650, 2150 time domain samples for the features.
The accuracy across all 4 time lengths was 69-73% with standard
deviation of 2%, showing that even with 3 seconds of data, RFVibe
does not lose much in accuracy.

4) Comparison with Basic Classifiers. To test whether training
simpler classifiers would suffice to train with RFVibe’s features, we
train an SVM and a Random Forest Classifier. Scikit-learn was used
for both the SVM and Random Forest Classifier and the parameters
were tuned to the optimal numbers. Tab. 1(c) shows that both the
SVM and Random Forest Classifiers have much worse classification
accuracies compared to RFVibe. While the SVM is closer in accu-
racy at 61.4%, the Random Forest Classifier is drastically worse at
29.7%. This result shows that the features of RFVibe require a more
complicated network to characterize the signal.

5) Binary Classification: Metal vs Non-Metal, Flat vs Curved.
Binary classification gives us insight into how useful RFVibe is when
simply separating between two classes for the object properties. Even
the simple task of classifying between two classes, such as metal vs.
non-metal can be extremely important when determining material
properties. We trained our network with simple binary labels for
curved versus flat objects and again for metal versus non-metal
objects. Fig. 10 showed that RFVibe can separate metal and non-
metal objects with 92.8% accuracy irrespective of shape. This shows
that our features contain useful information regarding the material of
an object that are independent of its shape. RFVibe can also RFVibe
can separate flat and curved objects with 96.9% accuracy irrespective
of material. These results imply that vibration properties of different
objects retain a great deal of information regarding the geometry of
the object.

6) Impact of Loss Weights. The loss weights, described in Sec-
tion 4.3, greatly impact the performance of RFVibe. Varying the loss
weights for each branch of the network indicates which features to
put more weight towards when calculating the loss. Loss weights
of [0.9, 0.3, 0.3, 1] correspond to a weight of 0.9 for the Frequency
Feature, 0.3 for the Power Feature, 0.3 for the Damping Feature
and 1 for the overall network. Shown in Tab. 1(b), using these loss
weights, RFVibe has an accuracy of 73%. As compared to other

selections of weights: [0, 0, 0, 1] gives an accuracy of 68% and [1, 1,
1, 1] gives an accuracy of 67.1%. This shows that weighing the loss
more towards the better performing features and the overall network
tends to give better accuracy.

7) Same Shape, Different Material. Material classification between
different 8 × 8 inch square sheets of metal allow us to determine
RFVibe’s performance when the same shape is used but the material
is varied. The metals were placed in a wooden block with a slit
so the metals could face the radar. Material classification for these
four metals gave an overall average accuracy of 83.2% shown in
Fig. 13(d). It should be noted that brass is an alloy, usually made of
around 60% copper which explains the confusion between brass and
copper when classifying.

8) Effect of Weight. Given that the vibration properties of an object
are influenced by its weight, understanding the resulting impact on
RFVibe’s classification accuracy is of interest. To this end, we look
at the trend of accuracy vs weight of objects within the range of 80g
to 600g for object wise classification of similar environment. The
results are reported in Fig. 13(a) showing in fact, that lower-weight
items have a slight drop in accuracy as the movement on the object is
heavily correlated with the speaker’s sound profile. However, within
the range of 200g to 600g we retain 77% accuracy for the objects
classification.

9) Background Noise. Another question that arises is whether au-
dible background noise will affect RFVibe’s accuracy. Thus, we
study the impact of how background noise affects the classification
of 4 metal sheets. In these experiments, we run experiments as de-
scribed before, however, we are producing a large background noise
using speakers throughout the room. The results are tested against a
network that has not seen any experiments with large background
noise. In fact, we see that there is almost no difference when testing
these experiments and see 82.3% accuracy when classifying between
these objects as compared to the prior 83.2%. This indicates that the
excitation of the object requires a considerable intensity of acoustic

(a) Speakers used. (b) Acc vs speakers.

CR-X Series

Klipsch
Subwoofer

Figure 12: Different speakers used in experiments.
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Figure 13: Different weighted object results, generalizing to unseen distances and same shape, different material classification.

waves. In addition, the distance between the object and the back-
ground audio is much larger, thus resulting in a rapid attenuation in
the background noise’s resulting power.

6.6 Generalizability of RFVibe

Here we study aspects of RFVibe’s generalizability.

1) Generalizing to unseen boundary conditions. The boundary
conditions of an object also affect its visible frequencies. Here we
demonstrate the impact of training the metal sheets on a fully con-
strained wooden base and testing RFVibe on experiments where we
incrementally move the metal sheet out of the wooden base. This
incremental movement results in changes in the boundary condi-
tion of the object, as less of the base is constrained to the wooden
base. Fig. 11(b) demonstrates the results for 𝑋 = 1, 𝑋 = 2, 𝑋 = 3

when 1 inch, 2 inches, and 3 inches of the base of the metal sheet
are unconstrained. Once 4 inches of the metal sheet, or more than
half of the metal is unconstrained, the accuracy drops to almost 0%.
This shows that up to a certain degree, RFVibe is resilient against
boundary condition variations.

2) Generalizing to unseen rotation. It is possible the object cannot
be exactly perpendicular to the radar in practice. Here, we trained on
the sheet metals that are within ±1° perpendicular to the RF signals
and tested on an aluminum sheet, thick plastic sheet and foam head
with angles varying from 10° to 90° rotation, with 0° denoting
perpendicular to the radar. For the aluminum sheet, Fig. 11(d) shows
accuracy is above 90% for up to 20° rotation. After 30° rotation, the
accuracy becomes more unreliable which is shown by the standard
deviations increasing. This is because the reflection from the metal
sheet is weak caused by the rotation away from the radar and thus
the vibration signals measured are inconsistent. A similar trend
appeared for plastic where the initial rotation of up to 20° retained
above 90% accuracy and after 30° rotation the accuracy drops to
around 60% with a larger standard deviation. The lower accuracy
for plastic as compared to the aluminum sheet is attributed to the
much weaker power of the reflected signal which also degrades as
the object rotated. However, with the plastic, the accuracy remained
around 40% even as the object was rotated to 90°. This was because
the plastic is not as flat as the aluminum sheet allowing for some
minor reflections even at 90°. A similar trend is seen with the foam
head, however, since this object is not flat, the average accuracy
remains above 70% till 80° rotation where it dips to around 60%.
The more stable accuracy is due in part to the foam head having
enough surface area for the RF signal to reflect back to the radar.
However, the standard deviation of the accuracy still increases as the
object is rotated because of the difference in vibration characteristics
due to the rotation.

3) Generalizing to unseen distance of object to speaker. We
analyze the performance of RFVibe against different distances of
the object to the speaker. There is a trade-off between the proximity
of the object to the speaker because a closer distance allows for
stronger vibrations induced on the object, however, there is more
leakage from the speakers vibrations when the range bins are so
close together. Here we train on a set of experiments done on a sheet
of metal, that is 10cm from the speaker, and then test RFVibe on
experiments done farther from the speaker. Fig. 13(b) shows the
trend of the accuracy decreasing as the object is moved further from
the speaker. This is because the acoustic waves can no longer excite
the object as effectively as the distance is increased.

4) Generalizing to unseen distance of object to radar. Another
variable that is important to material sensing systems is a distance
agnostic system. Classifying a material incorrectly because of the
variability in regards to distance is a common issue with power based
methods because of the loss in power as objects move further from
the radar. In this result, we train RFVibe on the 7 materials (23
objects) that are 0.5m away and test on experiments done 0.6m, 1m,
1.5m away. Fig. 13(c) shows the results. RFVibe has relatively the
same accuracy for all distances, showing that the vibration charac-
teristics of the materials do not change as the distance is varied.

5) Generalizing to obstructed objects. There is the question as to
how different methods of disguising the objects will affect RFVibe’s
performance. For vision-based material classification methods, not
having sight of the material itself would completely trick the classi-
fier. We show that RFVibe performs well under three circumstances
of disguising the objects. Experiments were done on the metals
sheets. First, different textures were printed on paper and taped to
the metals. These textures included images of various other materials
that could be used to trick a material classifier, such as putting an
image of wood on metal, or putting an image of brass on a sheet of
steel. Second, we placed the objects into a paper bag which obscured
the object from the radar. Finally, the metals were painted, thus hid-
ing their material. All three of these methods can cause the vibration
frequencies to shift, however, we show that RFVibe is resilient to
these minor impacts. Examples of the occlusion method is shown in
Fig. 14(c). These three different experiments were all tested on the
same network which was only trained with metals that had nothing
on or in front of them. As shown in Fig. 14(b), we only see a slight
drop in accuracy of RFVibe which is due to the change in vibrations
because of the paper, bag, or paint.

6) Generalizing to unseen objects. It is important to be able to
classify the materials of objects we have not seen before, since it
is not possible to train RFVibe on every possible object it might
encounter. We take a few objects out of the train set when doing
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Figure 14: Occluded and new objects.

material classification and test on these objects. Results in Fig. 14(a)
show that large flat objects such as a steel sheet, sheet of plastic or
a metal box are classified, they perform extremely well achieving
80-100% accuracy. However, for objects with smaller reflections
such as a foam head and plastic box, they only achieve 47% and
53.5% respectively. While this is not as accurate as the other unseen
objects classification, it still shows that RFVibe can generalize to
unseen objects for material classification.

7) Generalizing to different speakers. A smaller speaker is another
consideration when designing RFVibe. We evaluate RFVibe’s sys-
tem replacing the Klipsch Subwoofer with the CR-X series speaker
shown in Fig. 12(a), which has a 3dB frequency range of 80-20 KHz.
A different sound was used since the impulse train resulted in much
power lower for the CR-X speaker, including frequencies in the 3dB
range. Instead, a logarithmic chirp was used in order to get the most
power for each frequency. As shown from in the table of Fig. 12(b)
there is a small drop in accuracy, around 3.5%. However, this comes
at the cost of a much louder sound because of the smaller speakers
weaker frequency response for lower frequencies.

7 DISCUSSION LIMITATIONS

Several limitations of RFVibe are worth noting:

• Multiple Objects. Currently, RFVibe assumes that only one object
is in view of the radar and it is directly in front of the radar. However,
future work can look into differentiating between multiple objects
by beamforming and differentiating the vibrations seen at different
angles to separate multiple objects or objects made of multiple
materials.

• Thick Occlusions. While RFVibe generalizes well for thin occlu-
sions and painted-over objects, thick occlusions between the radar
and object as well as occlusions between the object and the speaker
pose another challenge. The attenuation resulting from the signal
passing through the occlusion weakens the vibration signals from
the object and RFVibe might instead pick up the vibration from the
occlusion.

• Location of the Speaker. In our experiments, the radar and
speaker were on opposite sides of the object since the radar’s vibra-
tions would be more pronounced because of the proximity of the
two. In addition, the acoustic signals drastically lose power due to
being farther away from the object as shown in Sec. 6.5. In order to
create a more mobile friendly setup, this calls for future work in a
robust algorithm to decouple the radars vibrations from the speaker.
Another possible solution would be to use an array of speakers in
order to focus the signal towards the object.

• Object Weight. The weight of the object is another factor that
affects vibrations. In this paper, we primarily focus on objects that
can be handheld, and thus tend to be lighter and easier to vibrate.
However, it is import to note that there are scenarios where purely us-
ing an acoustic source to vibration the object would be unsuccessful
due to the extreme weight and rigidity of the objects. In this case, the
network would be forced to classify purely based on power which
seen in Sec. 6.5 is not as robust as using vibration-based features. In
addition, in certain applications, it would make sense to use a touch
based vibration transducer which would more easily vibrate larger
and heavier objects.

• Environmental Factors. RFVibe shows a level of robustness
against boundary condition variations, however, drastic changes
would completely alter the vibration frequencies. This challenge is
not unique to RFVibe’s wireless method would also hold for contact-
based techniques. Other environmental factors, such as the surfaces
that the radar and object are placed on can affect the vibration
characteristics. A variety of different surfaces were included for
both the object and radar to be placed on, however, adding more
experiments with objects on different surfaces would help with the
bias towards the environment.

• Liquids. While RFVibe is shown with solid objects, the system
could be extended to liquids. As liquids have also been studied to
exhibit vibration characteristics [23].

8 CONCLUSION

In this paper, we show the feasibility of leveraging micrometer level
vibrations for an additional layer of information when determining
material and object properties. By placing an object in the presence
of an audio source, we can extract the vibrational modes and in
addition to the other reflected signals, accurately classify materials
and even further objects. We demonstrate using a 77-GHz mmWave
radar how we classify 7 different materials and investigate multiple
variables that affect reflection-based material sensing.
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