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ABSTRACT
We present the design, implementation, and evaluation of
RFlect, a mmWave imaging system capable of producing
around-the-corner high-resolution images in practical en-
vironments. RFlect leverages signals reflected off complex
surfaces (e.g., poles, concave surfaces, or composition of
multiple surfaces) to image objects that are not in the RF
line-of-sight. RFlect models the reflections and introduces
reconstruction algorithms for different types of surfaces. It
also leverages a novel method for precisely mapping the lo-
cation and geometry of the reflecting surface. We also derive
the theoretical resolution and coverage for different reflect-
ing surface geometries. We built a prototype of RFlect and
performed extensive evaluations to demonstrate its ability to
reconstruct the shape of objects around the corner, with an
average Chamfer Distance of 2cm and 3D F-Score of 88.6%.
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Figure 1: RFlect. is capable to leverage reflections off surrounding surfaces
like a pole to produce images of NLOS objects around a corner.
1 INTRODUCTION
In this paper, we explore the problem of non-line-of-sight
(NLOS) imaging, specifically producing high-resolution images
of objects around the corner. The ability to image objects
that are hidden from view around corners and obstacles has
several applications. Autonomous vehicles would be able
to detect traffic approaching an intersection while hidden
behind the corner of a building, allowing them to plan ac-
cordingly and avoid collisions. Similarly, an autonomous
robot navigating in a factory, warehouse, or restaurant can
sense other robots or humans around the corner. In disaster
response scenarios, the ability to see around occlusions can
allow response teams to efficiently search collapsed buildings
and rubble for survivors.

However, NLOS imaging in practical environments is cur-
rently not feasible. The majority of conventional imaging
modalities, such as cameras and LiDARs, require targets to
be in line-of-sight (LOS). One solution is to install a mirror
at the corner. However, this requires augmenting the envi-
ronment at every corner and is therefore not scalable. On
the other hand, there has been significant research on using
radio-frequency (RF) signals to see through walls [1, 7, 12, 17,
29, 57]. However, RF signals suffer severe attenuation when
they traverse through walls and cannot traverse all types of
thick walls especially given that they need to pass through
two walls two times to get to the object and back, e.g. around
the corner of concrete buildings.
More recent work has leveraged the idea of reflecting RF

signals off a plane to detect and localize objects around cor-
ners [39, 49, 54, 56]. However, simply localizing an object
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does not provide any perceptual information on what is
around the corner. For example, an autonomous vehicle
would need to plan differently for a motorcycle than for a
bicycle and a search and rescue robot must be able to differen-
tiate between a human and rubble. Although there has been
limited work on RF imaging around the corner [22, 44, 46],
these works make very strict assumptions about the envi-
ronment. First, they always assume there is a single, planar
surface to reflect the signals off, which is not always the
case in practical environments. Additionally, these systems
only operate in specially engineered environments where RF-
absorptive foam is placed in the area and/or metal is installed
on the reflecting wall, limiting their practicality.

In this paper, our goal is to achieve high-resolutionmmWave
imaging around corners, without making strict assumptions
about the environment. In many cases, there is not a single,
ideal reflecting plane. Instead, we often need to utilize any
available structure or surface to reflect the signals off, such
as pillars or poles, concave surfaces, or a combination of dif-
ferent reflectors. These scenarios are challenging for several
reasons. First, we need to properly model the reflections on
complex surfaces and incorporate them in our processing
algorithms to coherently combine the signals received at
different antennas in the mmWave radar. For example, using
the standard radar processing algorithms in case of multiple
reflecting planes would lead to several ghost reflections and
bad imaging results. Second, we need to know the precise
geometry and location of the complex reflecting surfaces to
accurately model the signal reflections. This is because when
using mmWave frequencies for imaging, even cm-level er-
rors in modeling the radius of a pole, for example, can lead to
severe distortions in the reconstructed image (as we demon-
strate in Sec. §9). Finally, we show that convex surfaces such
as poles disperse the reflected signals across a much wider
angle than the incident beam, resulting in a severe loss of an-
gular resolution, up to 22 times lower compared to a planar
reflector in some scenarios.

We present RFlect, which takes the first step towards using
wireless signals to image around corners in practical environ-
ments. At a high level, 1) RFlect reconstructs NLOSmmWave
images by first classifying the dominant reflectors that the
signals can reflect off and 2) then estimating their precise
geometries and locations using radar data. 3) Then, it uses
the reflector model to predict how the signals will reflect
and coherently combines the received signals to produce
high-resolution images. To enable RFlect, we address the
above-mentioned challenges as follows.
• Mathematical Modeling of NLOS mmWave Imaging:
We derive the mathematical models for mmWave imaging
through reflections at complex surfaces such as concave,

convex, and multiple planes. We propose algorithms to re-
construct the image in each case by showing how to find
the exact reflection point off the surface from each antenna
to every voxel in space around the corner and computing
the propagation distance of the reflection path in order to
coherently combine all received reflections. We also derive
the exact theoretical resolution and coverage of mmWave
imaging when reflecting off concave and convex surfaces.
• Precise Reflector Mapping: We introduce a new tech-
nique to precisely map the location and geometry of certain
reflecting surfaces, allowing RFlect to avoid severe image
degradation due to incorrect reflection path modeling. First,
RFlect uses the radar’s LOS image to get an initial coarse
geometry estimate of the reflecting surface. Unfortunately,
for non-planar reflectors, this is not sufficient to get a precise
estimate of the reflectors geometry. To address this, RFlect
leverages the fact that mmWave radars capture finer reso-
lution information in the phase of the signal which allows
us to compute the location and geometry of the reflectors
with higher accuracy. However, instead of using a matched
filter to construct an image of the surface fromwhich we esti-
mate the geometry, RFlect performs a matched filter over the
geometric parameters of the surface e.g. center location and
radius in case the reflecting surface is a pole. We describe
this method in detail in §7 and show that it significantly
improves image quality.
•Overcoming the Resolution Loss: As pointed out earlier,
convex surfaces result in a massive reduction in resolution.
We can compensate for this loss by using a much larger an-
tenna array. However, that would make the array too costly.
We observe that the reflected signals from the target only
occupy a very small portion of the angular spectrum (e.g.,
in the direction of the pole). Leveraging this insight, we can
use the same number of antennas to build a longer array by
increasing the antenna spacing, without suffering from alias-
ing. This is unlike the case of line-of-sight imaging, which
suffers from severe aliasing over the image.
We implemented a prototype of RFlect with a Synthetic

Aperture Radar (SAR) based mmWave imaging radar. We ex-
tensively evaluate RFlect in various environments and reflect-
ing surfaces (e.g., convex, concave, composite surfaces, etc)
to demonstrate its ability to accurately reconstruct the shape
of objects in NLOS. In addition to presenting high-resolution
radar images, we demonstrate our 3D reconstruction to have
an average Chamfer distance of 0.02m and F-Score of 88.6%
when compared to a 3D point cloud reconstructed from
the Polycam app used on an iPhone 12 Pro. Since 3D re-
construction is difficult to visualize in 2D, we provide an
anonymous video link to see the 3D radar point clouds here:
https://youtu.be/MqpnturbTIk.
Contributions: The paper has the following contributions:

https://youtu.be/MqpnturbTIk


• RFlect is the first mmWave imaging system capable of
producing high-resolution images around the corner in
practical environments.

• We introduce a method to precisely map the LOS reflectors
and coherently combine signals reflected from complex
surfaces to produce high-resolution NLOS images.

• We derive the theoretical impact on resolution and cover-
age for different geometries of reflecting objects.

• We build a prototype of RFlect, and demonstrate its perfor-
mance in many real-world environments, with different
types of corners and reflecting surfaces.

Limitations: This paper only takes the first steps towards
mmWave NLOS imaging in practical environments.We focus
on the design of reconstruction algorithms and demonstrate,
for the first time, significant results without instrumenting
the environment or assuming planar reflectors. However, we
acknowledge several limitations of our work that need to
be addressed before we can have a fully practical system.
For example, RFlect is currently limited to three classes of
geometries - convex, concave, and planar - and combinations
of multiple such reflectors. Also, our modeling currently
assumes specular reflection; future work could investigate
how incorporating diffuse scattering, polarization, material
properties, etc. can further improve our model. We discuss
these limitations, and more, in detail in Sec. §10.

2 RELATEDWORK
A. Optical Around-the-Corner: Past work for optical
NLOS imaging falls in two main categories: active and pas-
sive illumination methods. Active illumination methods use
lasers to illuminate the hidden scene [5, 10, 11, 15, 16, 24,
30, 32, 41, 42, 50]. However, these techniques require expen-
sive equipment, such as streak (time-of-flight) cameras along
with high-power lasers that can be harmful to humans [42].
More recent work eliminated the need for time-of-flight cam-
eras [5, 16], but makes strict assumptions about objects or the
scene such as having highly reflective targets in sparse dark
backgrounds. Passive illumination techniques, on the other
hand, utilize only ambient lighting [3, 13, 14, 27, 28, 34, 53].
However, many of them can only coarsely detect the pres-
ence of moving objects [3] or track objects [27, 28] rather
than reconstruct the shapes and images of targets. Those
which can reconstruct images of NLOS scenes [13, 14, 34, 53]
suffer from low resolution and distortions and have strict
setup requirements. For example, [34, 53] require additional
occluders in the scene, while [13, 14] rely on speckle correla-
tions to reconstruct the image, so they are applicable only to
small objects, as large objects do not cause self-interference.
It is worth noting that all aforementioned methods would
fail in low visibility (e.g. darkness, smoke, fog, etc.).

RFlect is also related to work which models optical re-
flections off planar and non-planar surfaces for the purpose
of measuring object specularity [25, 26]. We build off these
models and adapt them to derive models for around-the-
corner mmWave imaging, include unique phenomenon such
as reflector-dependent angular resolution and coverage.
B. RF Around-the-Corner: Prior works have explored
NLOS sensing using RF signals that bounce off walls or
diffract at the edge of corners , including mmWave [9, 35,
36, 39, 45, 48, 49, 51, 54], UWB [18, 19, 37, 43, 56], and tera-
hertz [6, 33] systems. However, theseworks can only coarsely
localize (or image at a very low resolution) the NLOS objects
and cannot reconstruct high-resolution images. Mosaic [49]
is the only one to consider non-planar reflection surfaces,
such as poles, to improve coverage and localization accuracy.
We build on top [49] to enable 3D imaging which requires
more complex reconstruction algorithms than localization
and we derive the theoretical resolution and coverage for
convex and concave reflectors.
In the context of NLOS imaging, the closest to our work

are [20, 22, 44, 46], which propose reflectingmmWave signals
off a singular plane to image NLOS objects. However, these
methods have primarily been demonstrated in extremely
controlled environments, augmented by RF-absorbing foams
and singular planar reflectors made of reflective materials
such as metal. RFlect, on the other hand, is able to operate in
more practical environments without requiring changes to
the environment. It is also worth noting that [46] established
a geometric model for around-corner mmWave imaging, but
it only considers the simplest scenario with a single planar
reflector. Our paper presents for the first time a more gener-
alized mathematical model for complex reflecting surfaces,
including concave, convex, and composite surfaces.
C. Other Modalities: Thermal [23] and acoustic [21] imag-
ing have also been studied to reconstruct hidden objects, but
have only been demonstrated in well-controlled laboratory
settings, with strict requirements on objects.

3 PRIMER ON MMWAVE IMAGING
We start with an overview of RF imaging in LOS (i.e., not
reflected) environments. A mmWave radar transmits chirp
signals that reflect off objects and are received by the radar
and used to measure range. A 2D array of receiver antennas
can be used to differentiate reflections along the azimuth and
elevation dimensions. Therefore, the received signals can be
converted into a 3D radar heatmap, which represents the
reflected signal strength of every voxel in 3D space, using
various reconstruction algorithms. The most straightforward
reconstruction algorithm is to apply matched filters of the
reflected signals at baseband. The reflected power 𝑃 (𝑣) from
voxel 𝑣 = (𝑥,𝑦, 𝑧) is:
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where 𝐴 and 𝑁 are the # of antennas and samples, 𝑠 (𝑛, 𝑖) is
the 𝑛𝑡ℎ baseband sample of the 𝑖𝑡ℎ antenna, 𝑓 and 𝑘 are the
chirp starting frequency and slope , 𝑐 is the speed of light,
𝑑 (𝑣, 𝑖) is the round-trip distance from the 𝑖𝑡ℎ antenna to 𝑣 .
Resolution: The quality of mmWave radar images depends
on the range and angular resolutions. While the multi-GHz
wide bandwidth of mmWave radars provides cm-level range
resolution, (comparable to those of depth cameras and Li-
DARs), the angular resolution is significantly lower. Angular
resolution is inversely proportional to the antenna aperture
size and is approximated in azimuth & elevation dimensions:

𝛿𝜃 ≈ 𝜆

𝐷𝑥 cos(𝜃 )
𝛿𝜙 ≈ 𝜆

𝐷𝑧 cos(𝜙)
(2)

where 𝛿𝜃 (𝛿𝜙 ) is the azimuth (elevation) resolution, 𝐷𝑥 (𝐷𝑧 )
is the aperture length in the x (z) dimension, and 𝜃 (𝜙) is the
angle between the voxel and the center of the x (z) aperture.
𝜆 is the wavelength of the center frequency.
RF Reflections: When an RF signal reflects off a surface, it
will primarily follow one of two types of reflection: scattering
(diffuse) or specular reflection. For specular reflection, the
angle of incidence is the same as the angle of reflection, while
diffuse reflections scatter at unpredictable angles. The type
of reflection depends on how smooth the reflecting surface
is relative to the signal’s wavelength. Since the mm-level
wavelength of mmWave radars is relatively long compared
to the surface variations of most materials (e.g., concrete,
wood, metal, etc.), the majority of reflections are dominated
by specular reflections. Since diffuse scattering is difficult to
predict and has a smaller contribution to the signal power,
we focus on leveraging specular reflections to image around
the corner and do not consider diffusion in this paper.

4 SYSTEM OVERVIEW
RFlect is a NLOS mmWave imaging system capable of pro-
ducing high-resolution images of objects that lie in both RF
and visual NLOS. The system can produce images by reflect-
ing signals off LOS reflectors of various geometries, including
planar, convex, concave, and composite surfaces. It uses the
LOS radar image of the reflecting surfaces to classify their
shape and find a rough estimate of their bounds. Then, it
refines its estimates to find the exact location and geometry
of each reflector in the environment. With this, it predicts
how signals reflect off the LOS surfaces and uses this to co-
herently combine the reflected signals and image objects in
NLOS. We describe RFlect’s operation in 3 sections:
• Around-the-Corner Imaging (§5). First, we develop the
mathematical models for imaging in NLOS with reflections
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Figure 2: Reflections around the corner of a plane vs. a pole

from complex surfaces. We describe imaging with planar,
convex, concave, and composite surfaces.

• Theoretical Resolution and Coverage (§6). Next, since
different surfaces will spread or concentrate the signals in
space, they change the resolution of the resulting imaging
system, as well as the coverage area it can successfully
image. We derive the theoretical resolution and coverage
area for planar, convex, and concave surfaces.

• Precise Reflector Mapping (§7). Finally, RFlect needs
to precisely map the LOS reflectors for the imaging models
in §5 to be accurate. To achieve high-precision mapping,
we leverage the radar data to derive the size and location
of every reflector in the environment.

5 AROUND-THE-CORNER IMAGING
In this section, we will describe how RFlect produces high-
resolution images around the corner. For simplicity, in this
section, we will assume that the shape and location of all
LOS reflectors are known, and we describe how to map these
reflectors in §7.

5.1 Planar Surface Imaging
For clarity, we will start by considering a single planar re-
flector surface. Intuitively, one can think of the reflecting
plane like a mirror. The behavior of a planar surface can be
seen in Fig. 2(a). Recall from §3 that we can assume that the
signals experience primarily specular reflections. This can
be seen by the red line, which shows a signal from the radar
reflecting specularly towards the object of interest. If we
perform ray-tracing without accounting for the reflection,
then the angle of arrival and distance will result in the red
dashed line ending behind the reflecting wall. This results in
a mirrored image of the object located behind the reflecting
wall. Leveraging this observation, we can produce an image
of the object following two steps: (1) Compute the matched-
filter radar image using Eq. 1. The mirrored image will then
appear behind the reflecting plane. (2) Reflect the mirrored
image over the known plane to produce the final image.

5.2 Convex & Concave Surface Imaging
One might wonder whether we can simply use the same
approach for planar surfaces to image over convex and con-
cave surfaces. Unfortunately, this approach will not produce
accurate images. For example, Fig. 3(c) shows the result of
a real-world experiment measured on a convex surface (a
concrete pole) when applying the previous approach, which
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Figure 3: Convex Imaging. Applying standard matched filters results in
distorted images while RFlect’s method does not.
is significantly distorted. Similar distortions result when ap-
plying this method to concave reflectors. This approach fails
because the convex and concave surfaces no longer act like
a simple planar mirror, but instead spread or concentrate
the signal over space as it reflects. For example, Fig. 2(b)
shows an example of two signals being reflected off a convex
surface, which each travel in different directions depending
on which part of the convex surface they reflect off.
We introduce a new method for coherently combining

signals reflected off convex/concave surfaces, with 2 steps:
(1) For each voxel-antenna pair, we find the point on the

surface 𝑝𝑟 that produces a specular reflection between
these two points. This is found using the approach in [8].

(2) Next, we perform a matched filter by correlating with
the round-trip distance of the specular path (i.e., from
antenna to surface to voxel and back along the same
path). Formally, this new image 𝑃𝑐 (𝑣) can be computed:

𝑃𝑐 (𝑣) =
�����
����� 𝐴∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝑠 (𝑛, 𝑖)𝑒 𝑗2𝜋𝑑 (𝑣,𝑝𝑟 ,𝑖 ) (𝑓 +𝑘𝑛)/𝑐
�����
����� (3)

where 𝑑 (𝑣, 𝑝𝑟 , 𝑖) is the round-trip distance from the ith an-
tenna to 𝑝𝑟 to voxel 𝑣 and back along the same path. It can
be computed as 𝑑 (𝑣, 𝑝𝑟 , 𝑖) = 2( | |𝑣 − 𝑝𝑟 | | + | |𝑝𝑟 − 𝑝𝑖 | |).
Fig. 3(d) shows the same experiment as above, this time

applying our new method for the convex surface. As can
be seen, this method is able to successfully reconstruct an
image using signals reflected off a convex reflector.
5.3 Multiple Reflecting Surfaces
Finally, in many practical scenarios, there is not one single
LOS reflector, but a composition of multiple reflecting sur-
faces. For example, a cabinet against a wall, an open door and
the wall inside of the room, a monitor in front of an office
wall, or a pole next to a door could result in multiple sets of
reflections. Using reflections from multiple surfaces allows
us to reconstruct a more complete image than with a single
reflector, as different surfaces have different viewpoints.
If we naively account for only one of the reflecting sur-

faces, then the reflections from the other surfaces will be
incorrectly combined, leading to poor quality and ghost im-
ages. We show an example through a real-world experiment
with two piecewise planes. The evaluation environment is

a) Evaluation setup b) Plane 1 Reflection d) RFlect’s Output

e) Lego Titanicc) Plane 2 Reflection

Figure 4: Composite surface imaging. RFlect’s output when imaging off
of composite surfaces.

shown in Fig. 4(a) and the object, which is a Lego model of
the Titanic is shown in Fig. 4(e). If we only account for the
plane of the wall, the image will appear as in Fig. 4(b). On
the other hand, if we only account for the plane of the door,
the image will appear as in Fig. 4(c).

This case is further complicated when reflections bounce
off both surfaces in the same path (different surfaces for
outgoing & incoming signal). In other words we expect four
combinations where the signal travels from the transmitter
→ Surface 1 or Surface 2 → voxel in space → Surface 1 or
Surface 2→ receiver antenna. This results in seeing three
ghost reflections when accounting for one plane. One ghost
appears each from paths that reflect off the same surface, and
one from the combination of surfaces as shown in Fig. 11.
Instead, RFlect computes the reflections from each an-

tenna to each voxel in space for each of the reflecting surfaces
and their combinations by finding the reflection points 𝑝𝑟
as described in the previous section. RFlect, then, combines
them coherently using amatched filter (Eq. 3). Fig. 4(d) shows
the result from the split Lego Titanic and Fig. 11 shows the
result for a more complex case. As is evident from the result,
our technique is able to successfully reconstruct images com-
ing from multiple reflectors. Furthermore, we reconstruct
the entire Lego Titanic, while the reflections from a single
reflector was only able to image part of the object, showing
how composite surfaces can improve the overall imaging.

6 THEORY: RESOLUTION & COVERAGE
6.1 Resolution
The theoretical resolution of RFlect is dependent not only
on the aperture length, but also on the geometry of the
reflecting surface. For ease of exposition, we explain how to
find the theoretical resolution through Fig. 5. An antenna
array can separate any two points spaced further than its
LOS resolution (defined in Eq. 2), as shown by the blue lines
in Fig. 5. So, how does this separability translate to the non-
line-of-sight region? To answer this question, we need to
find the angle between two points in our NLOS region that
will produce reflections arriving along the blue lines. We
do so by reflecting our LOS resolution over our reflecting
surface, shown by the red lines. Then, any points along these
lines will be separable, and, therefore, our NLOS resolution
is the angle between these two vectors.
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Figure 5: NLOS Imaging Resolution. The NLOS resolution can be found
by reflecting the LOS angular resolution over the reflecting surface.

6.1.1 Planar Surfaces. For simplicity, we will derive the
horizontal resolution from a planar surface and note that the
derivation can easily be extended to the vertical resolution
as well. For this reason, we will use 2D coordinates for the
remainder of this derivation. Without loss of generality, we
assume the radar is located at (0, 0). To find the angular
resolution, we start by finding the angle of arrival of the
reflected signal from a voxel 𝑣 = (𝑥,𝑦).

𝑥𝑟 = 𝑥 + |𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝐷 |𝑛𝑥 −
𝑛𝑦 (𝑥 − 𝑝𝑟𝑥 ) + 𝑛𝑥 (𝑦 − 𝑝𝑟𝑦 )

1 + |𝑛𝑥 𝑣𝑥+𝑛𝑦𝑣𝑦+𝐷 |
|𝑛𝑥𝑝𝑟𝑥 +𝑛𝑦𝑝𝑟𝑦 +𝐷 |

𝑛𝑦

𝑦𝑟 = 𝑦 + |𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝐷 |𝑛𝑦 +
𝑛𝑦 (𝑥 − 𝑝𝑟𝑥 ) + 𝑛𝑥 (𝑦 − 𝑝𝑟𝑦 )

1 + |𝑛𝑥 𝑣𝑥+𝑛𝑦𝑣𝑦+𝐷 |
|𝑛𝑥𝑝𝑟𝑥 +𝑛𝑦𝑝𝑟𝑦 +𝐷 |

𝑛𝑥

𝜃 = arctan
(
𝑦𝑟

𝑥𝑟

)
(4)

where (𝑥𝑟 , 𝑦𝑟 ) is the point on the plane producing a specular
reflection from the radar to voxel 𝑣 , 𝜃 is the AoA of the signal
from the specular reflection point, and the plane is defined
as 𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝐷 = 0 with unit normal 𝒏 = (𝑛𝑥 , 𝑛𝑦).
Next, we find the resolution, 𝛿𝜃 , at this AoA using Eq. 2.

We know that the aperture’s separability at this angle is
defined by two rays (𝑟1 & 𝑟2) centered at 𝜃 and spaced by 𝛿𝜃 .

𝒓1 =

[
cos(𝜃 − 𝛿𝜃

2 )
sin(𝜃 − 𝛿𝜃

2 )

]
𝒓2 =

[
cos(𝜃 + 𝛿𝜃

2 )
sin(𝜃 + 𝛿𝜃

2 )

]
(5)

We reflect these rays over the plane as described above:
𝒓 ′1 = 𝒓1 − 2(𝒓1 · 𝒏)𝒏 𝒓 ′2 = 𝒓2 − 2(𝒓2 · 𝒏)𝒏 (6)

where 𝒓 ′1 and 𝒓 ′2 are the reflections of 𝒓1 and 𝒓2 over the
plane, respectively. Now, the angular resolution, 𝛿𝜃,𝑃 , is the
angle between these two reflected rays:

𝛿𝜃,𝑃 = arccos
(
𝒓 ′1 · 𝒓

′
2

|𝒓 ′1 | |𝒓
′
2 |

)
(7)

If we substitute Eqs. 5 and 6 into Eq. 7, we get:

𝛿𝜃,𝑃 = arccos
(
(𝒓1 − 2(𝒓1 · 𝒏)𝒏) · (𝒓2 − 2(𝒓2 · 𝒏)𝒏)

|𝒓 ′1 | |𝒓
′
2 |

)
= arccos (𝒓1 · 𝒓2)

𝛿𝜃,𝑃 = arccos
(
cos(𝜃 + 𝛿𝜃

2
) cos(𝜃 − 𝛿𝜃

2
) + sin(𝜃 + 𝛿𝜃

2
) sin(𝜃 − 𝛿𝜃

2
)
)

𝛿𝜃,𝑃 = arccos (cos(𝛿𝜃 )) = 𝛿𝜃 (8)

Interestingly, the resolution is equivalent to the LOS res-
olution (𝛿𝜃 ). Intuitively, this makes sense as the plane acts
like a mirror; it neither spreads nor concentrates the signals.
6.1.2 Convex and Concave Surfaces. Next, we derive the
resolution when reflecting over convex or concave surfaces.
Since we assume that our convex and concave surfaces are
perpendicular to the ground, the horizontal resolution is
dependent on the curvature and location of the reflector.
In the vertical dimension, however, the surface acts like a
simple plane, meaning that the vertical resolution does not
change for these surfaces. Therefore, for the remainder of
this section, we will only derive the horizontal resolution.

Again, we start by finding the AoA for a voxel 𝑣 = (𝑥,𝑦).

𝜃𝑐 = arctan
(
𝑦𝑟,𝑐

𝑥𝑟,𝑐

)
(9)

where (𝑥𝑟,𝑐 , 𝑦𝑟,𝑐 ) is the specular reflection point between
𝑣 and the radar. We refer readers to [8] for details on finding
this point. 𝜃𝑐 is the AoA of a signal reflected from voxel 𝑣
over the convex surface. Similar to before, we define two
rays centered around the AoA to match the resolution:

𝒓1,𝒄 =

[
cos(𝜃𝑐 − 𝛿𝜃

2 )
sin(𝜃𝑐 − 𝛿𝜃

2 )

]
𝒓2,𝒄 =

[
cos(𝜃𝑐 + 𝛿𝜃

2 )
sin(𝜃𝑐 + 𝛿𝜃

2 )

]
(10)

Next, we find where these rays intersect with the circle.1

𝑏1 = −2𝒄 · 𝒓1,𝒄 𝑏2 = −2𝒄 · 𝒓2,𝒄
𝑑1 = 𝑏21 − 4( | |𝒄 | |2 − 𝑟2) 𝑑2 = 𝑏22 − 4( | |𝒄 | |2 − 𝑟2)

𝒑𝒊,1 =
−𝑏1 ±

√
𝑑1

2
𝒓1,𝒄 𝒑𝒊,2 =

−𝑏2 ±
√
𝑑2

2
𝒓2,𝒄

(11)

where 𝒄 and 𝑟 are the center and radius of the circle, and
𝒑 𝒊,1 and 𝒑 𝒊,2 are the points of intersection of 𝒓1,𝒄 and 𝒓2,𝒄
with the circle, respectively. The sign in the equation for 𝒑 𝒊,1
depends on the reflecting surface. If it is convex, it is −. If
it is concave, it is +. Then, the normal to the surface of the
circle at each of these points can be computed as:

𝒏1 =
𝒑𝒊,1 − 𝒄

| |𝒑𝒊,1 − 𝒄 | | 𝒏2 =
𝒑𝒊,2 − 𝒄

| |𝒑𝒊,2 − 𝒄 | | (12)

where 𝒏1 and 𝒏2 are the normals to the surface at 𝒑 𝒊,1 and
𝒑 𝒊,2, respectively. With this, we can then compute the direc-
tion of the reflected rays:

𝒓 ′1,𝒄 = 𝒓1,𝒄 − 2(𝒓1,𝒄 · 𝒏1)𝒏1
𝒓 ′2,𝒄 = 𝒓2,𝒄 − 2(𝒓2,𝒄 · 𝒏2)𝒏2

(13)

Finally, the theoretical resolution, 𝛿𝜃,𝐶 , can be computed as
the angle between the two reflected rays:

𝛿𝜃,𝐶 = arccos

(
𝒓 ′1,𝒄 · 𝒓

′
2,𝒄

|𝒓 ′1,𝒄 | |𝒓
′
2,𝒄 |

)
(14)

1We can check if the rays do not intersect if 𝑑1 < 0 or 𝑑2 < 0.



6.2 Coverage Area
Next, we derive the theoretical coverage for various reflectors.
The coverage of our NLOS imaging system is dependent on
the size and shape of the reflecting surface.
The coverage area can be found by sweeping the angle

of arrival across various angles and reflecting the signals
over the LOS surface. Then, the coverage area is any point
in space covered by these reflections. In the case of our sur-
faces (planar, concave, convex), this area is bounded in each
dimension by only two rays. In particular, we can obtain
the bounds of the coverage area by reflecting a ray over the
left-most and right-most bounds of the surface.

6.2.1 Planar Surface. First, we show the coverage of a pla-
nar surface. For simplicity, we show the derivation in the
horizontal dimension, and note that it can easily be extended
to the vertical . We assume the aperture is located at (0,0).

The edge of the coverage area is defined by the reflection
over the left and right edge of the plane, computed as:

𝒓𝑳 = 𝒃𝑳 − 2(𝒃𝑳 · 𝑛)𝑛 𝒓𝑹 = 𝒃𝑹 − 2(𝒃𝑹 · 𝑛)𝑛 (15)

where 𝒓𝑳 and 𝒓𝑹 are the rays bounding the coverage area
from the left and right , respectively, 𝒃𝑳 and 𝒃𝑹 are the 2D
coordinates of the left and right edge of the plane. Then, the
angular coverage, Θ𝑃 , is the angle between these two rays:

Θ𝑃 = arccos
(

𝒓𝑳 · 𝒓𝑹
| |𝒓𝑳 | | | |𝒓𝑹 | |

)
(16)

6.2.2 Convex Coverage. Next, we derive the coverage angle
for a convex surface. Again, we note that for this surface,
the vertical coverage does not change compared to the pla-
nar surface, so we only derive the horizontal coverage. For
simplicity, we are assuming that the convex reflector is a
complete circle, which is often the case(e.g., poles & pillars).

We find the edge of the coverage area by finding the two
tangents that intersect the center of the aperture. The slope
of the two tangents can be computed as:
(𝑥 − 𝑥𝑐 )2 + (𝑚𝑥 − 𝑦𝑐 )2 = 𝑟2

𝑚1,2 =
−(𝑦2𝑐 + 4𝑥𝑐𝑦𝑐 ) ±

√︁
(𝑦2𝑐 + 4𝑥𝑐𝑦𝑐 )2 − 4(𝑥2𝑐 + 𝑦2𝑐 − 𝑟2) (𝑦2𝑐 − 𝑟2)

2(𝑦2𝑐 − 𝑟2)
Next, we find the angle between the two tangents as:

𝜃𝑡 = arctan
���� 𝑚1 −𝑚2
1 +𝑚1𝑚2

���� (17)

When a ray is reflected off the circle, it will lie outside of
these two tangents. Therefore, the final angular coverage is:

Θ𝑐 = 2𝜋 − 𝜃𝑡 (18)

6.2.3 Concave Coverage. Finally, we derive the coverage for
a concave reflector. Similar to before, we note that the vertical
coverage does not change relative to a planar surface, so we
derive the horizontal converge. Unlike convex reflectors, we

a) Planar Surface b) Concave Surface c) Convex Surface

Figure 6: RFlect’s Mapping of Different Reflectors. a) Planar surfaces
are mapped with the line-of-best fit. b/c) Complex surfaces (e.g., concave /
convex) are mapped with our matched-filter algorithm for higher accuracy.

do not assume that concave reflectors are complete circles.
For example, curved monitors are only a portion of a circle.
We start by finding the edge of the coverage area as the

reflection off the left and right edge of the concave reflector:
𝒓𝑳,𝒄 = 𝒃𝑳,𝒄−2(𝒃𝑳,𝒄 ·𝒏𝑹 )𝒏𝑳 𝒓𝑹,𝒄 = 𝒃𝑹,𝒄−2(𝒃𝑹,𝒄 ·𝒏𝑹 )𝒏𝑹 (19)

Then, the coverage angle, Θ𝑉 , is the angle between them:

Θ𝑉 = arccos
(

𝒓𝑳,𝒄 · 𝒓𝑹,𝒄
| |𝒓𝑳,𝒄 | | | |𝒓𝑹,𝒄 | |

)
(20)

7 PRECISE REFLECTOR MAPPING
So far, we have described how to image objects using the
reflections off complex surfaces. However, until nowwe have
assumed that the exact shape and location of the surfaces
were known. Next, we will describe howwemap the location
and geometry of reflecting surfaces to enable NLOS imaging.
The overall process is summarized in Alg. 1.

Whenmapping reflecting surfaces, it is important to achieve
high-accuracy mapping. In fact, we show in §9.4.2 that, for
convex surfaces, even a few centimeters of errors can result
in significant distortions. To accurately map reflectors, we
will use the mmWave radar itself.

We start by computing the bird’s eye view (BEV) radar
image using a matched filter. We can then identify the LOS
surfaces by selecting all pixels above a power threshold 𝜏 .
For each surface in LOS, we crop the radar image around the
LOS surface. If the LOS surface contains a small number of
points, this can be classified as a convex surface, since the
majority of the surface is reflecting the signal away from
the radar. Otherwise, we find the line or arc that best fits
the points, as shown in Fig. 6a/b. If the residual error for the
line is less than that of the arc, we classify the surface as
planar; Otherwise, we classify it as concave. We note that
this approach assumes that all surfaces are perpendicular to
the ground, which is typically true for most walls and poles.
However, it can be easily extended to 3D instead of 2D.

While simply using the line of best fit might be sufficient
for planar surfaces, it does not work for more complex sur-
faces (e.g., convex and concave). Since these reflectors de-
grade the resolution, they require higher mapping accuracy.
Furthermore, due to the specularity of the reflector, the dom-
inant reflection each antenna receives will be its specular



Algorithm 1 RFlect
1) LOS Reflector Classification
𝑃𝐿𝑂𝑆 =

����∑𝐴
𝑖=1

∑𝑁
𝑛=1 𝑠 (𝑛, 𝑖 )𝑒 𝑗2𝜋𝑑 (𝑣,𝑖 ) (𝑓 +𝑘𝑛)/𝑐 ���� ⊲ Compute LOS SAR

image
𝑠𝐿𝑂𝑆 = {𝑠 ∈ 𝑃𝐿𝑂𝑆 |𝑠 > 𝜏 } ⊲ Find LOS surface points (power > 𝜏 )
if |𝑠𝐿𝑂𝑆 | < 𝛼 then

𝑐𝑙𝑎𝑠𝑠 = "Convex" ⊲ Convex if low number of points
else if line_fit_residual(𝑠𝐿𝑂𝑆 ) < arc_fit_residual(𝑠𝐿𝑂𝑆 ) then

𝑐𝑙𝑎𝑠𝑠 = "Planar" ⊲ Planar if line of best fit has lower residual
else

𝑐𝑙𝑎𝑠𝑠 = "Concave" ⊲ Otherwise, concave
end if
2) LOS Reflector Mapping
if 𝑐𝑙𝑎𝑠𝑠 == "Planar" then

(𝑥𝑝 , 𝑦𝑝 , 𝑛𝑝 ) = line_fit(𝑠𝐿𝑂𝑆 ) ⊲ Use line of best fit
else

(𝑥𝑐 , 𝑦𝑐 , 𝑟 ) = max(𝑥𝑐 ,𝑦𝑐 ,𝑟 ) ∈𝐵 𝑆 (𝑥𝑐 , 𝑦𝑐 , 𝑟 ) ⊲ Use Eqn. 22
end if
3) NLOS Imaging
if 𝑐𝑙𝑎𝑠𝑠 == "Planar" then

𝑃 (𝑣) =
����∑𝐴

𝑖=1
∑𝑁

𝑛=1 𝑠 (𝑛, 𝑖 )𝑒 𝑗2𝜋𝑑 (𝑣,𝑖 ) (𝑓 +𝑘𝑛)/𝑐 ���� ⊲ Use Eqn. 1
else

𝑃𝑐 (𝑣) =
����∑𝐴

𝑖=1
∑𝑁

𝑛=1 𝑠 (𝑛, 𝑖 )𝑒 𝑗2𝜋𝑑 (𝑣,𝑝𝑟 ,𝑖 ) (𝑓 +𝑘𝑛)/𝑐
���� ⊲ Use Eqn. 3

end if

reflection off the surface. Since this point is different for
every antenna, the reflections will not coherently combine
when processed with a normal matched filter, as shown in
Fig. 6c.
So, how can we accurately locate these surfaces? At a

high level, instead of assuming each antenna is able to re-
ceive reflections from every point in space, we instead design
a matched filter that accounts for surface specularity. Our
algorithm follows three steps:
(1) First, we model the reflector with a small number of

parameters. For example, poles are defined by their center
point (i.e., a 2D coordinate) and radius.

(2) For a given model, we then find the point on the surface
that produces a specular reflection from each antenna
back towards itself[8]. Then, we correlate each antenna’s
received signal with its specular reflection path to pro-
duce a score for this model. Formally:

𝑆 (𝑥𝑐 , 𝑦𝑐 , 𝑟 ) =
�����
����� 𝐴∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝑠 (𝑛, 𝑖)𝑒 𝑗2𝜋𝑑 (𝑝𝑎,𝑖 ,𝑝𝑟 ) (𝑓 +𝑘𝑛)/𝑐
�����
����� (21)

where 𝑝𝑎,𝑖 is the ith antenna location, and 𝑆 (𝑥𝑐 , 𝑦𝑐 , 𝑟 ) is
the score for a pole centered at (𝑥𝑐 , 𝑦𝑐 ) with radius 𝑟 .

(3) We repeat this process, searching over a range of param-
eters to find the model that best fits the received signals.
We bound this search based on the initial object bounds
from the LOS radar image. Formally, we select the center
and radius that maximizes the score:

(𝑥𝑐 , 𝑦𝑐 , 𝑟 ) = max
(𝑥𝑐 ,𝑦𝑐 ,𝑟 ) ∈𝐵

𝑆 (𝑥𝑐 , 𝑦𝑐 , 𝑟 ) (22)

where (𝑥𝑐 , 𝑦𝑐 ), 𝑟 are the final estimated center and radius,
and 𝐵 is the set of possible centers and radii.

Finally, once the LOS reflectors are mapped, we can apply
Eqns. 1 and 3 to produce images of the NLOS region.

8 OVERCOMING RESOLUTION LOSS
So far, we have described how we map LOS reflectors and
image NLOS objects. Recall from §6 that the theoretical reso-
lution for a convex reflector is drastically reduced compared
to that of a planar reflector. In this section, we will discuss
how we overcome this resolution loss.
To improve our resolution, we can increase the length

of our aperture, which improves our LOS resolution. From
Eq. 14, we see that improving our LOS resolution will in turn
improve our convex reflected resolution. However, simply
increasing the length of our aperture while maintaining the
same antenna spacing requires a significantly higher number
of antennas, making this approach prohibitively costly for a
full array implementation. Typically, increasing the antenna
spacing, i.e., subsampling the antenna space, results in severe
aliasing for LOS imaging 2.
However, NLOS imaging off a convex reflector does not

have the same limitation. Since all signals coming from the
NLOS region must reflect off the convex reflector, they will
all arrive at the radar within a small portion of the angular
spectrum. In fact, this is what causes the loss of resolution in
the first place. This allows us to use a much larger antenna
spacing before suffering from severe aliasing. In fact, we
can increase the aperture from 30cm to 90cm, while using
the same total number of antennas, to gain back 87% of our
resolution loss without any additional cost.
One additional point is worth noting. While the antenna

spacing can be increased for convex reflectors, the same is not
true for planar reflectors. Therefore, to successfully operate
with different reflector shapes, RFlect could rely on one non-
uniform array which is densely-spaced in the middle (for
planar reflectors), and sparsely-spaced on the outside (for
convex reflectors).

9 EVALUATION
9.1 Implementation & Setup
A. System Implementation:We implemented an end-to-
end prototype of RFlect using a TI AWR1843BOOSTmmWave
radar [40] on a 2D linear stage to produce a synthetic aper-
ture. For planar and convex reflecting surfaces, we use a
synthetic aperture of 30 × 30 cm, while for concave surfaces
we extend the aperture to 90 × 30 cm to compensate for the
loss of resolution. Our radar uses a bandwidth of 4GHz, and
512 samples per chirp. We implemented our NLOS imaging
models in CUDA to process the 3D radar heatmaps.
B. Evaluation Setup:Weevaluated RFlect in various practical

2While many works have aimed to overcome this limitation, such as through
randomly spacing arrays [55], there is still a limit to the number of antennas
that can be used in LOS imaging before aliasing overwhelms the image.



Plane 2 (metal) Plane 3 (glass) Pole 1 (concrete) Pole 2 (concrete) Pole 3 (concrete) Composite
(wood + concrete)

Concave (plastic)Plane 1 (concrete)

Figure 7: Reflecting Surfaces. RFlect is evaluated on multiple planar, convex, concave and composite surfaces.

Figure 8: Ground Truth. a) RGB image. b) 3D ground truth scan from
iPhone. c) ICP-aligned ground truth (pink) and radar (green) point clouds.

NLOS scenarios, both indoors and outdoors. Figure 7 shows
our experiment setup with 3 different planes, 3 different
poles, as well as concave surface and composite of multi-
ple planes, which include a variety of reflector materials
(concrete, wood, glass, metal, plastic). We tested 8 objects of
different shapes, sizes, and materials, shown in Fig. 9.
C. Ground Truth: The ground truth for calculating quanti-
tative metrics is the 3D point cloud reconstruction, shown
in Fig. 8, from the Polycam app which uses the LiDAR on
iPhone 12 Pro. Each object was imaged with a full 360◦ scan.
D. Metrics: To evaluate the quality of our NLOS images,
we use two quantitative metrics: Chamfer distance and 3D
F-Score which are typical metrics for evaluating the quality
of 3D point-cloud reconstruction [38, 47]. To compute these
metrics, we start by taking all points in our 3D radar image
above a certain power threshold to create a 3D point cloud3.
We then use iterative closest point (ICP)[2] to align the radar
point cloud with the ground-truth point cloud as shown
in Fig. 8c. Then, we compute the bi-directional Chamfer
distance (CD) as the average distance from each point in the
radar point cloud to its nearest neighbor in the ground truth
point cloud (and vice versa)[47]:

𝐶𝐷 (𝑃𝑅, 𝑃𝐺 ) =
1

2𝑁𝑅

𝑁𝑅∑︁
𝑖=1

𝑑 (𝑥𝑖 , 𝑃𝐺 ) +
1

2𝑁𝐺

𝑁𝐺∑︁
𝑗=1

𝑑 (𝑥 𝑗 , 𝑃𝑅) (23)

where𝐶𝐷 (𝑃𝑅, 𝑃𝐺 ) is the chamfer distance between the radar
point cloud 𝑃𝑅 and the ground truth point cloud 𝑃𝐺 (with
𝑁𝑅 and 𝑁𝐺 points, respectively). 𝑑 (𝑥, 𝑃) is the minimum
distance between point x and its nearest neighbor in point
cloud P, defined as 𝑑 (𝑥, 𝑃) =𝑚𝑖𝑛𝑥 ′∈𝑃 | |𝑥 − 𝑥 ′ | |.

Second, we evaluate the F-Score(FS) based on the precision
and recall[38, 52]. Here, precision (recall) is the percent of
points within the radar point cloud (ground truth point cloud)
3Since the results depend on the selected power threshold, we evaluate
the metrics across a range of thresholds and choose the best performing
threshold for each image. This ensures a fair comparison between RFlect
and other baseline evaluations.

whose nearest neighbor in the ground truth point cloud
(radar point cloud) are within a threshold 𝜏 (0.05m). Formally:

𝑃𝑅 =
1
𝑁𝑅

𝑁𝑅∑︁
𝑖=1

1𝑑 (𝑥𝑖 ,𝑃𝐺 )<𝜏 , 𝑅𝐸 =
1
𝑁𝐺

𝑁𝐺∑︁
𝑗=1

1𝑑 (𝑥 𝑗 ,𝑃𝑅 )<𝜏 , 𝐹𝑆 =
2 𝑃𝑅 𝑅𝐸

𝑃𝑅 + 𝑅𝐸

where 𝑃𝑅, 𝑅𝐸, and 𝐹𝑆 are the precision, recall, and F-Score,
respectively, 1 is an indicator variable.
E. Baselines: We compare to two LOS baselines. We place
the object directly in front of the radar aperture and apply
a standard matched filter algorithm. We repeat this at two
distances: LOS Near at 1.5 m and LOS Far at 4.5 m.

9.2 Qualitative Imaging Results
9.2.1 Imaging off Planar Surfaces. First, we compare the
around-the-corner imaging quality of RFlect when using a
planar reflector with two LOS baselines(§9.1). To evaluate
RFlect, we place the radar roughly 3.5 m from the reflecting
wall, and place the target object on the opposite side of the
corner roughly 1.5 m from the reflecting wall such that the
target object is in NLOS of the radar. The total distance (radar
to wall to object) is roughly equivalent to LOS Far . For both
RFlect and the baselines, we convert the 3D heatmap to 2D
by taking the maximum value along the axis of projection.

Fig. 9 shows the 2D heatmaps for LOS Near (2nd row), LOS
Far (3rd row), and RFlect (4th row), and the corresponding
RGB images of the target object (1st row). RFlect is able to
reconstruct the shape of objects in NLOS settings using pla-
nar reflections. For example, the star heatmap clearly shows
all 5 arms and the Taj Mahal shows two individual poles and
the main tower. Moreover, the performance of RFlect when
using planar reflection closely matches the performance of
LOS mmWave imaging at the same distance. For example,
the Taj Mahal’s heatmaps for LOS Far and RFlect both show
similar resolution. This is expected, since planar reflections
do not cause a loss in resolution, as derived in §6.1.

Furthermore, to evaluate RFlect’s ability to image in differ-
ent environments, we capture NLOS images off two different
planar reflectors in entirely new environments. Fig. 10(a)
shows the results for three different objects overlaid on RGB
images of the objects for our second and third plane (1st
and second row, respectively). In both cases, RFlect is able
to produce accurate heatmaps of the objects, demonstrating
RFlect’s ability to operate across different environments.
9.2.2 Imaging offConvex Surfaces. Next, we evaluate RFlect’s
performance when imaging off convex surfaces. In this result,
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Figure 9: Around Corner Imaging of RFlect compared to baselines. We compare RFlect to baselines of LOS images close to the imaging aperture (1.5m),
far from the imaging aperture (4.5m) and images reflected off a wall (planar surface).
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Figure 10: Other reflectors. RFlect’s performance on a) different planes shown in Fig. 7, b) composition of planes, c) convex and d) concave reflectors.
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Figure 11: Resolving ghosts. (Top)3 ghosts ap-
pear. (Bottom)RFlect separates one mannequin.

Figure 12: 3D Reconstruction: of star,
Taj Mahal, rocket & Hogwarts.

Location Error Radius Error

a) RFlect b) 1 cm c) 3 cm d) 5 cm e) 1 cm f) 3 cm g) 5 cm

Figure 13: Impact of Mapping Accuracy. Adding errors to
location (b, c, d) and radius (e, f, g).

we use poles in a building as the reflecting surface. We place
the radar between 1.6m and 2m from the convex surface,
and place target objects around the corner at an angle of
roughly 90° to the radar (with respect to the surface) and
at a distance of 1.5m to 2m from the surface. The radii of
our poles are between 0.15m and 0.2m. With this setup, the
theoretical resolution derived in §6.1 is between 7° and 10°.

Fig. 10(c) shows the results overlaid on RGB images for 4
different objects on the same pole, as well as results of the
star on 3 different poles.

RFlect can produce heatmaps that represent the shape of
NLOS objects when reflecting off convex surfaces, showing
the value of RFlect’s techniques.Moreover, when imaging the
same object across three different poles (shown by the 3 star



images on the right), RFlect is able to produce heatmaps of
similar quality. This demonstrates RFlect’s ability to operate
robustly across a variety of different environments (different
pole geometries, locations, surrounding environments, etc).
9.2.3 Imaging off Concave Surfaces. Next, we evaluate the
performance when imaging off concave surfaces. We place
the radar 3 m from a curved monitor with a 1.5m radius
(shown in Fig. 7), and placed the target object 3m from the
monitor such that the object is completely hidden from the
radar. The target object and radar form a roughly 90° angle
with respect to the reflecting surface. With this setup, the
theoretical resolution is 2°, as derived in §6.1.
Fig. 10(d) shows the results for three different target ob-

jects overlaid on RGB images. RFlect is able to produce
heatmaps matching the shape of the target object, showing
that RFlect’s techniques are able to accurately map reflec-
tions off concave surfaces for around-the-corner imaging.
9.2.4 Imaging offMultiple Planes. Weevaluate RFlect’s ability
to image around-the-corner when relying on reflections from
multiple different surfaces. We place the radar in front of two
piecewise planes at a distance of roughly 2m, and place the
target object entirely in NLOS roughly 2m from the planes.
We plot the 2D thresholded heatmap overlaid on the RGB
image of the target object.

Fig. 10(b) shows the resulting image when using only one
plane (1st row), using only the second plane (2nd row), and
the full image when applying RFlect’s methods (3rd row) for
three objects. For the Titanic (1st column), imaging with only
one plane produces half of the object, while using the other
plane produces the other half, due to the limited coverage of
each plane. With our composite imaging techniques, RFlect
is able to produce an image of the full object by combining
reflections off both planes. Similar patterns exist for other
objects. This result demonstrates the importance of RFlect’s
techniques leveraging multiple piecewise reflectors.

Fig. 11 demonstrates the result when an object is imaged
off of two planes such that there is a significant overlap in
the reflected coverage between the two planes. As described
in Sec. §5.3, without using RFlect’s method we are left with
3 ghosts. To accurately reconstruct the mannequin, we cor-
relate the signal with each of the possible paths to construc-
tively add all copies at the correct location and eliminate the
ghosts. This results with a much stronger reflection coming
from the mannequin and places it in the correct location.
9.2.5 3D Reconstruction. So far, we have only shown 2D
projections of the heatmap. In fact, RFlect can reconstruct in
3D, which provides much more contextual information. We
create a 3D pointcloud with all points in the radar image that
are above a certain power threshold.We then color each point
in the point cloud based on its z-coordinate. Fig. 12 shows
the reference RGB image(1strow), the point cloud overlaid
on the image(2nd row), and stand-alone point cloud(3rd row)

LOS Far Planar
CD FS CD FS

Titanic 0.02 0.90 0.03 0.87
Mann. 0.04 0.67 0.04 0.70
Globe 0.01 0.97 0.02 0.96

Taj Mahal 0.03 0.88 0.02 0.90
Rocket 0.01 1.00 0.01 0.99

Hogwarts 0.01 0.97 0.01 0.97
Star 0.01 0.99 0.01 0.99

Road Sign 0.01 0.99 0.04 0.69
Planar 2 Planar 3

Mann. 0.05 0.70 0.04 0.67
Globe 0.02 0.89 0.02 0.89
Star 0.01 0.99 0.01 0.99

Table 1: LOS Far & Planar. Cham-
fer distance & F-Scores.

CD FS

C
on

ve
x

Mann. 0.06 0.62
Globe 0.02 0.93

Taj Mahal 0.03 0.85
Rocket 0.02 0.94
Star 0.01 0.99

Star (P. 2) 0.02 0.99
Star (P. 3) 0.01 0.94

C
on

ca
v e Globe 0.02 0.95

Taj Mahal 0.04 0.76
Star 0.01 0.98

C
om

p . Titanic 0.03 0.86
Taj Mahal 0.02 0.92

Star 0.01 1.0
Table 2: Complex Surfaces.
Chamfer distance & F-Scores.

for some example images produced with planar reflections.
However, it is hard to visualize point clouds in 2D.We provide
an anonymized video for better visualization which includes
additional examples https://youtu.be/MqpnturbTIk.
9.3 Quantitative Results
9.3.1 Planar Results. Next, we evaluate the quality of our
image using quantitative metrics. We compute the Chamfer
distance and F-score (See §9.1) for the Plane 1 images(Fig. 9
4th row), Plane 2 & 3 images (Fig, 10(c)), and LOS Far baseline
images (Fig. 9 3rd row). Table 1 reports the Chamfer Distance
(2nd and 4th columns) and F-Scores (3rd and 5th columns)
for LOS Far and planar reflections for all objects. We make
the following observations:
• For all objects, the Chamfer Distance is 4cm or less, and the
F-Score is 69% or higher (with most objects over 87%). This
shows that RFlect is able to properly recover the shape of
the object when relying on planar reflections.

• Furthermore, for all objects except the road sign, the cham-
fer distance and F-Score are less than 1cm and 3% dif-
ferent than the results for the same objects in LOS Far,
respectively. This demonstrates that RFlect’s planar image
quality is equivalent to LOS images at the same distance.

• Interestingly, the road sign performs much worse in the
planar case than in LOS Far, with an F-Score of 69% (vs
90%). This can be seen visually by the decreased image
quality in Fig. 9. This may be due to the high specularity
of this object, making it difficult to image when it is not
perpendicular to incoming signals.

9.3.2 Convex & Concave Results. We evaluate the quality of
our results when using convex and concave surfaces as reflec-
tors. Table 2 shows quantitative results (CD & FS) for convex
and concave imaging. We make the following remarks:
• For convex reflectors, RFlect achieves a chamfer distance
less than 3cm and an F-score greater than 85% for all ob-
jects except the Mannequin. This demonstrates that RFlect
is able to successfully leverage convex reflectors to enable
high-resolution around-the-corner imaging.

https://youtu.be/MqpnturbTIk


a) Planar b) Convex

A: Titanic, B: Mannequin, C: Globe, D: Taj Mahal, E: Rocket, F: Hogwarts, G: Star, H: Road Sign

Figure 14: Comparison toOtherObjects. F-Scores for (a) planar reflecting
surfaces and (b) convex reflecting surfaces compared to ground-truth.
• The mannequin scores the lowest for convex reflections,
with a CD of 6cm and an F-score of 62%, likely due to it
being our largest object. Furthermore, this is only 2 cm
and 8% worse than the mannequin for planar reflections.

• For concave reflectors, RFlect achieves a chamfer distance
less than 4cm and an F-score greater than 76% for all ob-
jects. This demonstrates RFlect’s ability to accurately use
concave reflectors to image in NLOS.

Across all results (planar, concave, convex & composite re-
flections), we report an average Chamfer distance of 2cm
and F-Score of 88.6% compared to the ground truth.
9.3.3 Comparison to Other Objects. Finally, we compare the
radar point clouds to other object’s ground truth point clouds
to determine if the radar point clouds are informative enough
to identify which object was imaged. We use the same radar
point clouds as in §9.2, and compute their F-Score compared
to other ground truth point clouds. Fig. 14(a-b) show the
confusion matrices when using planar reflections and con-
vex reflections, respectively. The rows denote different test
objects (from the radar) and columns are different ground-
truth point clouds. The F-Score is written in each grid square,
and the grid is colored such that each row is normalized (i.e.,
the largest value in each row has the darkest blue and the
smallest value has the lightest blue). We note that in each
row, the highest F-Score occurs when the test object matches
the ground-truth (i.e., along the diagonal). This shows that
each radar image matches closest with its correct object.
9.4 Microbenchmarks
9.4.1 Impact of Distance. We first evaluate the impact of dis-
tance. We image the mannequin in LOS, off a planar surface,
and off a convex surface and increase the distance between
the radar and the surface (or the object in LOS). Fig. 15 shows
the RGB photo and results in a) LOS, b) NLOS using planar
reflector and c) NLOS using convex reflector at different dis-
tances. The distances listed in the figure are the total distance
(from radar to reflecting surface to object). As the distance
increases in each case, the image quality degrades slightly.
This pattern is most noticeable with the convex reflector,
which is expected (See §9.4.3). However, RFlect is still able
to image at 7m with planar and 6m with convex reflectors.
9.4.2 Impact of Mapping Accuracy. Next, we evaluate the
impact of errors in the convex reflector mapping on the

final image. We use the example of the mannequin imaged
with reflections off a convex surface from §9.2.2. We add an
increasing amount of error (1 cm, 3 cm, 5 cm) to RFlect’s esti-
mated location (center y) and radius, independently. Fig. 13a
shows RFlect’s original output compared to the images when
adding small mapping errors in Fig. 13b-g. We note that even
with very small errors in the location or radius, the image of
the mannequin becomes significantly distorted. This shows
the importance of RFlect’s surface mapping techniques for
producing accurate around-the-corner images.
9.4.3 Theoretical Resolution. Here, we simulate the theo-
retical angular resolution of RFlect, using our derivations
in §6.1, and the radii from our experimental setups (0.175m
for convex& 1.5m for concave). First, we simulate the angular
resolution vs distance from the radar to the reflecting surface.
Fig. 16a plots the results for planar (red), convex (green), and
concave (blue). We note that the planar angular resolution
is constant vs distance (translating to a linear decrease in
cartesian resolution), as expected since planar surfaces do
not affect resolution. Convex and concave surfaces see a
linear growth in angular resolution with distance4.

Next, we simulate the resolution vs the angle between the
center of the radar aperture and the reflecting surface. Here,
negative angles correspond to the left side of the aperture.
Fig. 16b plots the results for planar (red), convex (green),
and concave (blue) surfaces. We note that for convex and
concave surfaces, the resolution reduces from 16° to 6° as the
angle ranges from -30° to 40°. Therefore, RFlect has a higher
resolution when the pole is on the right side of aperture.

9.5 Long-Range NLOS 2D Mapping
Finally, in Fig. 17, we show how RFlect can produce around-
the-corner bird’s eye view (BEV) mapping on the horizontal
plane, across a muchwider area (e.g., multiple buildings). The
top row of Fig. 17 illustrates the radar heatmap when using a
LOS matched filter algorithm, displaying reflections behind
the building walls. The second row shows the ground truth
overhead view of themapwith thresholded radar points over-
laid. The blue points represent LOS reflections and the red
points represent the NLOS reflections. By carefully mapping
the reflection geometry of each wall, we are able to recre-
ate an accurate 2D BEV map of the streets, which closely
matches the ground truth map. This result illustrates that, in
addition to 3D imaging of objects, RFlect can also be used for
long-distance around-the-corner mapping for applications
such as autonomous driving.

10 LIMITATIONS
Although RFlect introduces the first step towards around-
the-corner NLOS imaging in practical environments, it has
several limitations that requiremorework to achieve pervasive
4Note that concave surfaces can also improve resolution, but only when the
target is near the surface, closer than the focal point.
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a) Line-of-Sight b) NLOS – Planar Reflector c) NLOS – Convex Reflector

Figure 15: Impact of Distance. The impact of distance when a) in LOS, b) reflecting off planar surfaces, c) reflecting off convex surfaces.
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Figure 16: Theoretical Resolution. Impact of a) distance and b) angle on
planar(red), convex(green), and concave(blue) resolution.

Figure 17: Long-range around-the-corner BEV mapping with sur-
rounding walls: Top: BEV radar heatmap. Bottom: Ground truth map with
radar points overlaid. Blue: LOS reflections, red: NLOS reflections.
NLOS imaging:
• For the purpose of this paper, we are assuming three cate-
gories of reflectors (concave, convex, and planar) and the
combination of multiple such reflectors, which are com-
mon in everyday life. While some of our techniques can
translate to other low-dimensional surfaces (e.g., spheres,
elliptical surfaces, etc), future work is needed to extend
RFlect to work with more complex irregular surfaces, for
example by constructing 3D representations of the LOS
environment to model all the reflections. Despite this, we
believe RFlect takes important first steps towards a more
generalizable around-the-corner imaging system.

• More generally, RFlect requires the presence of a reflecting
surface.While this is the case inmany real-world scenarios,
RFlect (even with more advanced modeling) would not be

able to operate when there are no reflecting surfaces.
• Our techniques assume specular reflections off the LOS
scene, with which we achieved accurate imaging across a
variety of evaluation environments, as shown in §9. How-
ever, while most reflections at mmWave frequencies are
specular [31], some very rough surfaces may result in
some amount of diffuse scattering, which may decrease
the NLOS image quality. It would be interesting for future
work to explore the impact of such surfaces and incorpo-
rate diffuse scattering into the reflection model. Further-
more, other phenomenon such as polarization, material
behaviour, etc. could be further explored to increase the
model accuracy.

• Our prototype implementation leverages a synthetic aper-
ture to emulate a 2D array. However, in the future, this
can be replaced with a fixed antenna array to eliminate
the scanning time, enabling mobile applications such as
autonomous vehicles. Alternatively, one could leverage
robotic motion (e.g.drones, wheeled robots) to create the
synthetic aperture for applications like search and rescue.

• While we empirically demonstrate RFlect’s ability to op-
erate across a variety of different scenarios (e.g., reflector
material, target material, etc), future work could further ex-
pand the theoretical understanding of around-the-corner
imaging by analyzing their impact on signal strength. For
example, some reflection properties may be identifiable
from a LOS radar image to predict the signal strength of
the resulting image.

11 CONCLUSION
This paper presented RFlect, the first NLOS imaging system
capable of producing high-resolution images in practical
environments by leveraging reflections off LOS surfaces. It
introduced new techniques for imaging off various surfaces,
including convex, concave, and composite surfaces, as well
as precisely mapping LOS reflectors to enable accurate im-
age reconstruction. Further, we derived the theoretical res-
olution & coverage. Our evaluation showed RFlect’s ability
to successfully reconstruct different objects across various
reflectors, both indoor & outdoor.
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APPENDIX A: CIRCLE REFLECTION POINT
The problem of finding the point on a circle which produces a specular
reflection between two given points is known as Alhazen’s problem[8].
Here, we briefly describe one known algebraic solution and refer readers to
[8] for more details. First, the two given points are modeled as numbers in
the complex plane. This solution assumes a unit circle (e.g., centered at 0
with radius 1), so we scale the numbers accordingly:

𝑧1 =
(𝑥1 − 𝑥𝑐 ) + (𝑦1 − 𝑦𝑐 ) 𝑗

𝑟
𝑧2 =

(𝑥2 − 𝑥𝑐 ) + (𝑦2 − 𝑦𝑐 ) 𝑗
𝑟

(24)

where (𝑥𝑐 , 𝑦𝑐 ) and r are the center and radius of the circle, (𝑥1, 𝑦1 ) and
(𝑥2, 𝑦2 ) are the given points and 𝑧1 and 𝑧2 are their complex numbers,
respectively.

Then, the specular reflection point will be one of the four roots of the
following polynomial:

𝐴𝑢4 − 𝐵𝑢3 + 𝐷𝑢 − 𝐸 = 0 (25)

where 𝐴 = 𝑧1𝑧2, 𝐵 = −(𝑧1 + 𝑧2 ) , 𝐷 = 𝑧1 + 𝑧2, and 𝐸 = −𝑧1𝑧2 and where ·
is the conjugate operator. To find the polynomial roots, we can solve the
general case of a 4th degree polynomial [4]. We apply a change of variable:

𝑥 = 𝑢 − 𝐵

4𝐴
, 𝛼 = − 3𝐵2

8𝐴2 + 𝐶

𝐴

𝛽 =
𝐵3

8𝐴3 , 𝛾 = − 3𝐵4

256𝐴4 − 𝐵𝐷

4𝐴2 + 𝐸

𝐴

(26)

Then, the new equation is:
𝑥4 + 𝛼𝑥2 + 𝛽𝑥 + 𝛾 = 0 (27)

Next, compute the following intermediate variables:

𝑃 =
𝛼2

12
− 𝛾, 𝑄 = − 𝛼3

108
+ 𝛼𝛾

3
− 𝛽2

8

𝑤 =
√︁
𝛼 + 2𝑦, 𝑈 = −

3

√︄
−𝑄
2
+

√︂
𝑄2

4
+ 𝑃3

27

𝑧 =
𝛽

2𝑤
, 𝑦 = − 5𝛼

6
+

{
− 3√𝑄 𝑃 = 0
𝑈 − 𝑃

3𝑈 𝑃 ≠ 0

(28)

Now, the roots of the equation are:

𝑢1,2,3,4 =
−𝐵
4𝐴

+ 1
2

𝑠𝑤 + 𝑟

√︄
−(𝛼 + 2𝑦) − 2

(
𝛼 + 𝑠 𝛽

𝑤

) (29)

where 𝑠, 𝑟 ∈ {−1, 1} are variables to choose the signs, and all 4 combi-
nations create the 4 different roots. Then, we can choose the correct root
corresponding to our specular root. For the case of a convex surface, it will
be the root that minimizes the round trip distance of the specular path:

𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖∈{1,2,3,4} ( |𝑧1 − 𝑢𝑖 | + |𝑧2 − 𝑢𝑖 |), 𝑢𝑟 = 𝑢𝑘 (30)
Finally, we convert this complex root to our reflection point:

𝑝𝑟 = (𝑅𝑒 (𝑢𝑟 ), 𝐼𝑚(𝑢𝑟 )) (31)
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